Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Highest unoccupied molecular orbital

HOMO Highest unoccupied molecular orbital IPI 2,6-Diimidizoylpyridine... [Pg.196]

Knowledge of molecular orbitals, particularly of the HOMO Highest Occupied Molecular Orbital) and the LUMO Lowest Unoccupied Molecular Orbital), imparts a better understanding of reactions Figure 2-125b). Different colors e.g., red and blue) are used to distinguish between the parts of the orbital that have opposite signs of the wavefunction. [Pg.135]

In view of this, early quantum mechanical approximations still merit interest, as they can provide quantitative data that can be correlated with observations on chemical reactivity. One of the most successful methods for explaining the course of chemical reactions is frontier molecular orbital (FMO) theory [5]. The course of a chemical reaction is rationali2ed on the basis of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), the frontier orbitals. Both the energy and the orbital coefficients of the HOMO and LUMO of the reactants are taken into account. [Pg.179]

When you request an orbital, yon can use the cardinal number of the orbital (ordered by energy and starting with number=l) or an offset from either the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LL MO). Offset from the HOMO are negative and from the LUMO are positive. Often these frontier orbitals are the ones of most chemical interest. [Pg.244]

I he electron density distribution of individual molecular orbitals may also be determined and plotted. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are often of particular interest as these are the orbitals most cimimonly involved in chemical reactions. As an illustration, the HOMO and LUMO for Jonnamide are displayed in Figures 2.12 and 2.13 (colour plate section) as surface pictures. [Pg.99]

Highest occupied molecular orbital Intermediate neglect of differential overlap Linear combination of atomic orbitals Local density approximation Local spin density functional theory Lowest unoccupied molecular orbital Many-body perturbation theory Modified INDO version 3 Modified neglect of diatomic overlap Molecular orbital Moller-Plesset... [Pg.124]

Considering Highest Occupied Molecular Orbital and Lowest Unoccupied Molecular Orbital (providing that solvation energies are equal) 44 might be.a better reducer than 43 (Schemes 65-68). [Pg.73]

Frontier orbitals (Section 10 14) Orbitals involved in a chem ical reaction usually the highest occupied molecular orbital of one reactant and the lowest unoccupied molecular orbital of the other... [Pg.1284]

If the number of electrons, N, is even, you can have a closed shell (as shown) where the occupied orbitals each contain two electrons. For an odd number of electrons, at least one orbital must be singly occupied. In the example, three orbitals are occupied by electrons and two orbitals are unoccupied. The highest occupied molecular orbital (HOMO) is /3, and the lowest unoccupied molecular orbital (LUMO) is 11/4. The example above is a singlet, a state of total spin S=0. Exciting one electron from the HOMO to the LUMO orbital would give one of the following excited states ... [Pg.221]

Thermodynamic properties such as heats of reaction and heats of formation can be computed mote rehably by ab initio theory than by semiempirical MO methods (55). However, the Hterature of the method appropriate to the study should be carefully checked before a technique is selected. Finally, the role of computer graphics in evaluating quantum mechanical properties should not be overlooked. As seen in Figures 2—6, significant information can be conveyed with stick models or various surfaces with charge properties mapped onto them. Additionally, information about orbitals, such as the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), which ate important sites of reactivity in electrophilic and nucleophilic reactions, can be plotted readily. Figure 7 shows representations of the HOMO and LUMO, respectively, for the antiulcer dmg Zantac. [Pg.163]

Fig. 7. Graphical representations of (a) the Highest Occupied Molecular Orbital (HOMO) and (b) the Lowest Unoccupied Molecular Orbital (LUMO) for ranitidine. It is possible, in the ordinarily visible color-coded data not shown here, to distinguish the strong localization (a) of the HOMO to the sulfur atom and adjacent nitroethyleneamine fragment and the contrasting localization (b) of the LUMO to the nitroethylenearnine fragment. Neither the LUMO not HOMO appear to have contributions from the dimethylaminomethyl-suhstitiited furan. Fig. 7. Graphical representations of (a) the Highest Occupied Molecular Orbital (HOMO) and (b) the Lowest Unoccupied Molecular Orbital (LUMO) for ranitidine. It is possible, in the ordinarily visible color-coded data not shown here, to distinguish the strong localization (a) of the HOMO to the sulfur atom and adjacent nitroethyleneamine fragment and the contrasting localization (b) of the LUMO to the nitroethylenearnine fragment. Neither the LUMO not HOMO appear to have contributions from the dimethylaminomethyl-suhstitiited furan.
It is now possible to "see" the spatial nature of molecular orbitals (10). This information has always been available in the voluminous output from quantum mechanics programs, but it can be discerned much more rapidly when presented in visual form. Chemical reactivity is often governed by the nature of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Spectroscopic phenomena usually depend on the HOMO and higher energy unoccupied states, all of which can be displayed and examined in detail. [Pg.93]

The most extensive calculations of the electronic structure of fullerenes so far have been done for Ceo- Representative results for the energy levels of the free Ceo molecule are shown in Fig. 5(a) [60]. Because of the molecular nature of solid C o, the electronic structure for the solid phase is expected to be closely related to that of the free molecule [61]. An LDA calculation for the crystalline phase is shown in Fig. 5(b) for the energy bands derived from the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for Cgo, and the band gap between the LUMO and HOMO-derived energy bands is shown on the figure. The LDA calculations are one-electron treatments which tend to underestimate the actual bandgap. Nevertheless, such calculations are widely used in the fullerene literature to provide physical insights about many of the physical properties. [Pg.47]

FIGURE 13.38 The Tr Tr transition in ds,trans-, 3-cyclooctadiene involves excitation of an electron from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). [Pg.566]

The most important molecular- orbitals are the so-called frontier molecular- orbitals. These are the highest (energy) occupied molecular- orbital (HOMO), and lowest (energy) unoccupied molecular- orbital (LUMO). The following picture shows the LUMO surface for the hydrogen molecule, H2. The LUMO consists of two separate surfaces, a red... [Pg.1271]


See other pages where Highest unoccupied molecular orbital is mentioned: [Pg.334]    [Pg.219]    [Pg.380]    [Pg.362]    [Pg.362]    [Pg.334]    [Pg.219]    [Pg.380]    [Pg.362]    [Pg.362]    [Pg.182]    [Pg.951]    [Pg.393]    [Pg.233]    [Pg.307]    [Pg.4]    [Pg.412]    [Pg.565]    [Pg.10]    [Pg.233]    [Pg.240]    [Pg.244]    [Pg.74]    [Pg.449]    [Pg.419]    [Pg.40]    [Pg.40]    [Pg.80]    [Pg.797]    [Pg.412]    [Pg.565]    [Pg.399]    [Pg.412]    [Pg.35]   


SEARCH



Highest

Highest occupied molecular orbital interaction with lowest unoccupied

Highest occupied-lowest unoccupied molecular orbital analysis

Orbital, unoccupied

Orbitals unoccupied

Unoccupied molecular orbitals

© 2024 chempedia.info