Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroformylation higher olefins

The 0x0 process is employed to produce higher alcohols from linear and branched higher olefins. Using a catalyst that is highly selective for hydroformylation of linear olefins at the terminal carbon atom. Shell converts olefins from the Shell higher olefin process (SHOP) to alcohols. This results in a product that is up to 75—85% linear when a linear feedstock is employed. Other 0x0 processes, such as those employed by ICI, Exxon, and BASE (all in Europe), produce oxo-alcohols from a-olefin feedstocks such alcohols have a linearity of about 60%. Enichem, on the other hand, produces... [Pg.441]

Olivier-Bourbigou s group, for example, has recently shown that phosphite ligands can be used in Rh-catalyzed hydroformylation in ionic liquids as well as the well loiown phosphine systems [81]. Since phosphite ligands are usually unstable in aqueous media, this adds (apart from the much better solubility of higher olefins in... [Pg.239]

Our approach is to use the inexpensive ligands that are already used industrially as well as conventional solvents. The goal of this project is to develop a thermomorphic approach to the rhodium-catalyzed hydroformylation of higher olefins (>Ce) that enhances conversion rates and ease of product recovery while minimizing catalyst degradation and loss. [Pg.245]

Shell higher olefin process (organic/organic) and the Ruhrchemie-Rhone Poulenc propene hydroformylation process (aqueous/organic). The diversity of the applications may confuse the newcomer but it is not easy to comprehend even by the more experienced. A guide to this field may help a lot, and this is why the book of Adams, Dyson and Tavener is most welcome. [Pg.261]

A very elegant solution to solve this problem is the introduction of either a permanent or a temporary phase boundary between the molecular catalyst and the product phase. The basic principle of multiphase catalysis has already found implementation on an industrial scale in the Shell higher olefin process (SHOP) and the Ruhrchemie/Rhdne-Poulenc propene hydroformylation process. Over the years, the idea of phase-separable catalysis has inspired many chemists to design new families of ligands and to develop new separation... [Pg.216]

The consequence of low alkene solubihty is in that industrially the RCH-RP process can be used only for the hydroformylation of C2-C4 olefins. In all other cases the overah production rate becomes unacceptably low. This is what makes the hydroformylation of higher olefins one of the central problems in aqueous/organic biphasic catalysis. Many solutions to this problem have been suggested (some of them will be discussed below), however, any procedure which increases the mutual solubihty of the organic components and the aqueous ingredients (co-solvents, surfactants) may... [Pg.110]

Hydroformylation of higher olefins provide long chain alcohols which find use mainly as plasticizers. No aqueous/organic biphasic process is operated yet for this reaction, for several reasons. First, solubility of higher olefins is too small to achieve reasonable reaction rates without applying special additives (co-solvents, detergents, etc.) or other means (e.g. [Pg.112]

Veiy recently it was disclosed, that the water-soluble dinuclear complex obtained in the reaction of [ RhCl(COD) 2] and 11-mercaptoundecanoic acid catalyzed the aqueous/organic biphasic hydroformylation of styrene and various arene-substituted styrenes with good activity and useful selectivity to the branched aldehydes (Scheme 4.6) [82], Below pH 4 the acid form of the complex [ Rh(p-S(CH2)ioC02H)(COD) 2] precipitated virtually quantitatively but could be redissolved in water on addition of base. Importantly, higher olefins could also be hydroformylated by this catalyst (for 1-octene TOP = 17.5 h at 55 °C, 35 bar syngas, n/i = 1.0). [Pg.116]

The studies listed in Table 4.5 illustrate the practical realization of the above principles. Not surprisingly, research into the use of surfactants is directed mainly to the hydroformylation of higher olefins, which show negligibly small solubility in water. Four main approaches are clearly distinguishable (but not always separable) ... [Pg.124]

In conclusion it can be said, that micellar effects offer useful possibilities to tune the reactivity and separation characteristics of aqueous/organic biphasic hydroformylations. Nevertheless, the added sensitivity of the systems to small changes in process variables and the added cost of surfactants and/or specially synthetized ligands have to be justified by high added value products or on grounds of process cost savings. Whether this will happen on industrial scale (perhaps in the hydroformylation of higher olefins) remains to be seen. [Pg.128]


See other pages where Hydroformylation higher olefins is mentioned: [Pg.475]    [Pg.491]    [Pg.475]    [Pg.491]    [Pg.467]    [Pg.469]    [Pg.14]    [Pg.234]    [Pg.235]    [Pg.258]    [Pg.165]    [Pg.401]    [Pg.225]    [Pg.243]    [Pg.243]    [Pg.28]    [Pg.30]    [Pg.8]    [Pg.137]    [Pg.53]    [Pg.130]    [Pg.278]    [Pg.114]    [Pg.130]    [Pg.132]    [Pg.132]    [Pg.133]    [Pg.237]    [Pg.172]    [Pg.234]    [Pg.235]    [Pg.258]    [Pg.450]    [Pg.8]    [Pg.144]    [Pg.144]   
See also in sourсe #XX -- [ Pg.156 ]

See also in sourсe #XX -- [ Pg.156 , Pg.285 ]




SEARCH



Biphasic Hydroformylation of Higher Olefins

Higher hydroformylation

Higher olefins

Hydroformylation of higher olefins

Hydroformylations of higher olefins

Hydroformylations, olefins

Olefin hydroformylation

Shell higher olefin process hydroformylation

© 2024 chempedia.info