Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Harmonic oscillator anharmonicity

The author examines with success the efficiency of the methods by their applications to bound states for the one-dimensional harmonic oscillator, anharmonic oscillators, the Morse potential, and the modified Poschl-Teller potential in quantum mechanics. [Pg.399]

An improved treatment of molecular vibration must account for anharmonicity, deviation from a harmonic oscillator. Anharmonicity results in a finite number of vibrational energy levels and the possibility of dissociation of the molecule at sufficiently high energy. A very successful approximation for the energy of a diatomic molecule is the Morse potential ... [Pg.280]

Marquardt R and Quack M 1989 Infrared-multlphoton excitation and wave packet motion of the harmonic and anharmonic oscillators exact solutions and quasiresonant approximation J. Chem. Phys. 90 6320-7... [Pg.1091]

These harmonic-oscillator solutions predict evenly spaced energy levels (i.e., no anharmonicity) that persist for all v. It is, of course, known that molecular vibrations display anharmonicity (i.e., the energy levels move closer together as one moves to higher v) and that quantized vibrational motion ceases once the bond dissociation energy is reached. [Pg.69]

This is a check on the reasonableness of the method chosen. For example, it would not be reasonable to select a method to investigate vibrational motions that are very anharmonic with a calculation that uses a harmonic oscillator approximation. To avoid such mistakes, it is important the researcher understand the method s underlying theory. [Pg.136]

The reason that does not change with isotopic substitution is that it refers to the bond length at the minimum of the potential energy curve (see Figure 1.13), and this curve, whether it refers to the harmonic oscillator approximation (Section 1.3.6) or an anharmonic oscillator (to be discussed in Section 6.1.3.2), does not change with isotopic substitution. Flowever, the vibrational energy levels within the potential energy curve, and therefore tq, are affected by isotopic substitution this is illustrated by the mass-dependence of the vibration frequency demonstrated by Equation (1.68). [Pg.132]

Figure 6.4 Potential energy curve and energy levels for a diatomic molecule behaving as an anharmonic oscillator compared with those for a harmonic oscillator (dashed curve)... Figure 6.4 Potential energy curve and energy levels for a diatomic molecule behaving as an anharmonic oscillator compared with those for a harmonic oscillator (dashed curve)...
A molecule may show both electrical and mechanical anharmonicity, but the latter is generally much more important and it is usual to define a harmonic oscillator as one which is harmonic in the mechanical sense. It is possible, therefore, that a harmonic oscillator may show electrical anharmonicity. [Pg.143]

However, unlike electrical anharmonicity, mechanical anharmonicity modifies the vibrational term values and wave functions. The harmonic oscillator term values of Equation (6.3) are modified to a power series in (u + ) ... [Pg.143]

Owing to the effects of mechanical anharmonicity - to which we shall refer in future simply as anharmonicity since we encounter electrical anharmonicity much less frequently -the vibrational wave functions are also modified compared wifh fhose of a harmonic oscillator. Figure 6.6 shows some wave functions and probabilify densify functions (iA A ) for an anharmonic oscillator. The asymmefry in and (iA A ) 5 compared wifh fhe harmonic oscillator wave functions in Figure f.i3, increases fheir magnitude on the shallow side of the potential curve compared with the steep side. [Pg.146]

The vibrational term values for a polyatomic anharmonic oscillator with only nondegenerate vibrations are modified from the harmonic oscillator values of Equation (6.41) to... [Pg.186]

The corresponding level broadening equals half. In fact is the diagonal kinetic coefficient characterizing the rate of phonon-assisted escape from the ground state [Ambegaokar 1987]. In harmonic approximation for the well the only nonzero matrix element is that with /= 1,K0 Q /> = <5o, where is the zero-point spread of the harmonic oscillator. For an anharmonic potential, other matrix elements contribute to (2.52). [Pg.26]

Under most circumstances the equations given in Table 10.4 accurately calculate the thermodynamic properties of the ideal gas. The most serious approximations involve the replacement of the summation with an integral [equations (10.94) and (10.95)] in calculating the partition function for the rigid rotator, and the approximation that the rotational and vibrational partition functions for a gas can be represented by those for a rigid rotator and harmonic oscillator. In general, the errors introduced by these approximations are most serious for the diatomic molecule." Fortunately, it is for the diatomic molecule that corrections are most easily calculated. It is also for these molecules that spectroscopic information is often available to make the corrections for anharmonicity and nonrigid rotator effects. We will summarize the relationships... [Pg.555]

Anharmonicity and Nonrigid Rotator Corrections With the rigid rotator and harmonic oscillator approximations, the combined energy for rotation and... [Pg.557]

Table A4.5 summarizes the equations for calculating anharmonicity and nonrigid rotator corrections for diatomic molecules. These corrections are to be added to the thermodynamic properties calculated from the equations given in Table A4.1 (which assume harmonic oscillator and rigid rotator approximations). Table A4.5 summarizes the equations for calculating anharmonicity and nonrigid rotator corrections for diatomic molecules. These corrections are to be added to the thermodynamic properties calculated from the equations given in Table A4.1 (which assume harmonic oscillator and rigid rotator approximations).
According to Bartell (1961a), the relative motion of the interacting non-bonded atoms is described by means of a harmonic oscillator when the two atoms are bonded to the same atom, and by means of two superimposed harmonic oscillators when the atoms are linked to each other via more than one intervening atom. It is the second case which is of interest in connection with the biphenyl inversion transition state. The non-bonded interaction will of course introduce anharmonicity, but since a first-order perturbation calculation of the energy only implies an... [Pg.5]

The book thus embraces an extended study on a variety of issues within the theory of orientational ordering and phase transitions in two-dimensional systems as well as the theory of anharmonic vibrations in low-dimensional crystals and dynamic subsystems interacting with a phonon thermostat. For the sake of readability, the main theoretical approaches involved are either presented in separate sections of the corresponding chapters or thoroughly scrutinized in appendices. The latter contain the basic formulae of the theory of local and resonance states for a system of bound harmonic oscillators (Appendix 1), the theory of thermally activated reorientations and tunnel relaxation of orientational... [Pg.4]

The heat capacity models described so far were all based on a harmonic oscillator approximation. This implies that the volume of the simple crystals considered does not vary with temperature and Cy m is derived as a function of temperature for a crystal having a fixed volume. Anharmonic lattice vibrations give rise to a finite isobaric thermal expansivity. These vibrations contribute both directly and indirectly to the total heat capacity directly since the anharmonic vibrations themselves contribute, and indirectly since the volume of a real crystal increases with increasing temperature, changing all frequencies. The constant volume heat capacity derived from experimental heat capacity data is different from that for a fixed volume. The difference in heat capacity at constant volume for a crystal that is allowed to relax at each temperature and the heat capacity at constant volume for a crystal where the volume is fixed to correspond to that at the Debye temperature represents a considerable part of Cp m - Cv m. This is shown for Mo and W [6] in Figure 8.15. [Pg.245]

Lehmann, K. K. (1983), On the Relation of Child and Lawton s Harmonically Coupled Anharmonic-Oscillator Model and Darling-Dennison Coupling, J. Chem. Phys. 79, 1098. [Pg.230]


See other pages where Harmonic oscillator anharmonicity is mentioned: [Pg.526]    [Pg.303]    [Pg.526]    [Pg.303]    [Pg.586]    [Pg.625]    [Pg.95]    [Pg.95]    [Pg.143]    [Pg.144]    [Pg.240]    [Pg.249]    [Pg.197]    [Pg.299]    [Pg.505]    [Pg.559]    [Pg.644]    [Pg.2]    [Pg.278]    [Pg.137]    [Pg.295]    [Pg.296]    [Pg.296]    [Pg.694]    [Pg.703]    [Pg.710]    [Pg.733]    [Pg.126]    [Pg.34]    [Pg.118]   
See also in sourсe #XX -- [ Pg.219 ]




SEARCH



Anharmonic oscillation

Anharmonicities oscillator

Anharmonicity

Anharmonicity oscillators

Harmonic oscillation

Harmonic oscillator

© 2024 chempedia.info