Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hamaker constant microscopic approach

An attractive interaction arises due to the van der Waals forces between molecules of colloidal particles. Depending on the nature of dispersed particles, the Keesom forces (or the dipole-dipole interaction), the Debye forces (or dipole-induced dipole interaction), and the London forces (or induced dipole-induced dipole interaction) may contribute to the van der Waals interaction. First, the van der Waals interaction was theoretically computed using a method of the pairwise summation of interactions between different pairs of molecules of the two macroscopic particles. This method called the microscopic approximation neglects collective effects, and, as a consequence, misrepresents the Hamaker constant. For many problems of a practical use, however, specific features of the total interaction are determined by a repulsive part, and such an effective, gross description of the van der Waals interaction may often be accepted [3]. The collective effects in the van der Waals interaction have been taken into account in the calculations of Lifshitz et al. [4], and their method is known in the literature as the macroscopic approach. [Pg.444]

The major disadvantage of this microscopic approach theory was the fact that Hamaker knowingly neglected the interaction between atoms within the same solid, which is not correct, since the motion of electrons in a solid can be influenced by other electrons in the same solid. So a modification to the Hamaker theory came from Lifshitz in 1956 and is known as the Lifshitz or macroscopic theory." Lifshitz ignored the atoms completely he assumed continuum bodies with specific dielectric properties. Since both van der Waals forces and the dielectric properties are related with the dipoles in the solids, he correlated those two quantities and derived expressions for the Hamaker constant based on the dielectric response of the material. The detailed derivations are beyond the scope of this book and readers are referred to other publications. The final expression that Lifshitz derived is... [Pg.59]

In the original treatment, also called the microscopic approach, the Hamaker constant was calculated from the polarizabilities and number densities of the atoms in the two interacting bodies. Lifshitz presented an alternative, more rigorous approach where each body is treated as a continuum with certain dielectric properties. This approach automatically incorporates many-body effects, which are neglected in the microscopic approach. The Hamaker constants for a number of ceramic materials have been calculated from the Lifshitz theory using optical data of both the material and the media (Table 9.1) (9). Clearly, all ceramic materials are characterized by large unretarded Hamaker constants in air. When the materials interact across a liquid, their Hamaker constants are reduced, but still remain rather high, except for silica. [Pg.204]

The key property in these calculations is the so-called Hamaker constant (A), which is directly linked to the C parameter of Equations 2.3 and 2.4 via the so-called microscopic (London) approach ... [Pg.16]


See other pages where Hamaker constant microscopic approach is mentioned: [Pg.217]    [Pg.629]    [Pg.188]    [Pg.423]    [Pg.18]    [Pg.2017]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Approach microscopic

Constant, Hamaker

Hamaker approach

Hamaker microscopic approach

© 2024 chempedia.info