Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Haloperidol actions

In view of the known cellular actions of DA, such as increased K+ efflux and reduced Ca + currents associated with Dj receptor activation in cell lines, inhibition would be the expected response to DA, especially as cyclic AMP, which is increased by Dj receptor activation also inhibits striatal neurons. In fact although many DA synaptic effects are blocked by Dj antagonists like haloperidol, the role of Di receptors should not be overlooked. [Pg.150]

The administration of low doses of PCP to rodents induces hyperactivity and stereotypy (Chen et al. 1959 ). The observation that neuroleptics such as chlorpromazine, haloperidol, and pimozide, and adrenolytics such as alpha-methyl paratyrosine antagonize these behavioral effects of PCP suggests that they are mediated by facilitation of central dopaminergic neurotransmission (Murray and Horita 1979). The actions of PCP on central dopaminergic neurotransmission may be similar to amphetamine. A dose of PCP (2.5 mg/kg) in rats, which has no effects when given alone, enhances the behavioral effects of 1 and 3 mg/kg of d-amphetamine (Balster and Chait 1978). PCP, like dopamine, has also been shown to suppress plasma prolactin (Bayorh et al. 1983). However, the firm establishment of an excl usive relationship between dopamine neuro-transmission and PCP effects is difficult because of the prominent interactions of this drug with other neurotransmitter systems. [Pg.141]

Sleep and sedative effects of the atypical antipsychotics could be related to different mechanisms antagonism of 5-HT2 receptors, antihistaminic and antimus-carinic effects, and probably an a-1 noradrenergic effect. The difference in the effect on sleep between risperidone and haloperidol may be due to their differential actions on serotoninergic receptors (Trampus and Ongini 1990 Trampus et al. 1993). [Pg.440]

The answer is d. (Hardman, pp 407-4122) Haloperidol is a butyro phenone derivative with the same mechanism of action as the phe-nothiazines, that is, blockade of dopaminergic receptors. It is more selective for D2 receptors. Haloperidol is more potent on a weight basis than the phenothiazines, but produces a higher incidence of extrapyra-midal reactions than does chlorpromazine. [Pg.160]

The answer is c. (Hardman, pp 574—575.) Phencyclidine is a hallucinogenic compound with no opioid activity Its mechanism of action is amphetamine-like. A withdrawal syndrome has not been described for this drug in human subjects. In overdose, the treatment of choice for the psychotic activity is the antipsychotic drug haloperidol. [Pg.160]

There is another reason why medications exert multiple effects. For example, an antidepressant that very specifically promotes serotonin neurotransmission and has little or no interaction with other receptor types will still produce multiple effects. How can this be Remember that in different areas of the brain, a single neurotransmitter can assume very distinct roles. When an individual takes a medication that alters the activity of a particular neurotransmitter, it generally does so throughout the brain. Consequently, the dopamine receptor blocking effect of haloperidol (Haldol) reduces hallucinations and paranoia in one brain region but causes upper extremity stiffness through its action in another brain region. [Pg.31]

Detailed studies of the binding of H-labelled haloperidol to neuronal membranes showed that there was a much better correlation between the therapeutic potency of a neuroleptic and its ability to displace this ligand from the nerve membrane. This led to the discovery of two types of dopamine receptor that are both linked to adenylate cyclase but whereas the Di receptor is positively linked to the cyclase, the D2 receptor is negatively linked. It was also shown that the receptor is approximately 15 times more sensitive to the action of dopamine than the D2 receptor conversely, the receptor has a low affinity for the butyrophenone and atypical neuroleptics such as clozapine, whereas the D2 receptor appears to have a high affinity for most therapeutically active neuroleptics. [Pg.44]

It also seems plausible that antipsychotic drugs competitively bind with dopamine receptors and block the action of dopamine on corresponding receptor sites, thus lowering psychotic activity. Central dopamine receptors are subdivided into Dj, D2, and according to some sources, Dj receptors. These receptors have a high affinity for dopamine, but they differ in sensitivity to neuroleptics of various chemical classes. For example, drugs of the phenothiazine series are nonselective competitive Dj and D2 antagonists. Unlike phenoth-iazines, antipsychotics of the butyrophenone series such as haloperidol display selective action only on D2 receptors. [Pg.84]

A number of different compounds of the piperidine and piperazine series with p-fluorobuty-rophenone group substitutions at the nitrogen atom display significant neuroleptic activity (haloperidol, trifluperidol, droperidol, methorin). There is a considerable interest in butyrophenone derivatives as antipsychotic agents as well as in anesthesiology. They exhibit pharmacological effects and a mechanism of action very similar to that of phenothiazines and thioxanthenes in that they block dopaminergic receptors. However, they are more selective with respect to D2 receptors. [Pg.91]

Representatives of diphenylbutylpiperidines are pimozide, fluspirilene, and penfluridol, which belong to the powerful neuroleptic drugs with expressed antipsychotic properties similar to haloperidol. The principle distinctive feature of this series of drugs is their prolonged action. The mechanism of their action is not completely known however, it is clear that they block dopaminergic activity. [Pg.96]

In terms of pharmacological action, pimozide is similar to haloperidol. It is used in hospitals as well as in outpatient settings for supportive therapy of patients suffering from schizophrenia, paranoid conditions, and mental and neurotic disorders with paranoid characteristics. It is unfit for use in severe psychoses because it does not possess psychomotor-sedative action. It is used for treating patients who suffer from Turretts s syndrome. Pimozide has a number of side effects, many of which are similar to those of phe-nothiazine and a number of others. A synonym of this drug is orap. [Pg.97]


See other pages where Haloperidol actions is mentioned: [Pg.235]    [Pg.359]    [Pg.461]    [Pg.1274]    [Pg.294]    [Pg.91]    [Pg.365]    [Pg.369]    [Pg.490]    [Pg.105]    [Pg.128]    [Pg.136]    [Pg.70]    [Pg.76]    [Pg.76]    [Pg.42]    [Pg.447]    [Pg.46]    [Pg.88]    [Pg.90]    [Pg.478]    [Pg.222]    [Pg.105]    [Pg.157]    [Pg.207]    [Pg.224]    [Pg.227]    [Pg.70]    [Pg.316]    [Pg.194]    [Pg.84]    [Pg.14]    [Pg.73]    [Pg.81]    [Pg.99]    [Pg.109]    [Pg.132]   
See also in sourсe #XX -- [ Pg.128 ]




SEARCH



Haloperidol

Haloperidol receptor blocking actions

Haloperidol, antiemetic action

© 2024 chempedia.info