Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halobacteria membrane function

Both in the case of sensory rhodopsin in humans and of bacteriorhodopsin (a heptahelical membrane protein in halobacteria which is not coupled to a G protein) translocation of a Schiff-base proton is the essential step in making the protein functional (reviewed in ref 58). In rhodopsin the conversion of the inactive AH state to the AHI state that binds to the G protein is coupled to proton transfer from the Schiff base to the counterion, Glul 13, and proton uptake from the medium to the highly conserved Glul34, which serves as proton acceptor. Based on that similarity, one could consider sensory rhodopsin as an incomplete proton pump. Furthermore, a property shared by all G-protein-coupled receptors is a triplet, formed by residues 134-136 in rhodopsin, consisting of Glu-Arg-Tyr. The consequences of mutational replacement of Glul34 supports the notion that the state of protonation of this amino add is crudal for activity, and that its protonation triggers the conformational transition of the receptor from the inactive to the active state. [Pg.86]

Photoreceptor Pigments. There have been several reviews on the structures, photochemistry, and functioning of the retinal-protein photoreceptor pigments involved in the processes of visionand in the purple membrane of Halobacteria (bacteriorhodopsin). ° ° In addition to the papers quoted earlier on the spectroscopy of these pigments, many other reports have appeareddealing with rhodopsin and intermediates in its photocycle, especially photochemistry, chromophore-protein conformation and binding, and reaction kinetics. Similar studies on bacteriorhodopsin have also been described." "-"" ... [Pg.188]

The retinal proteins of halobacteria constitute a unique set of light energy transduction devices, based on similar chemistry but designed to perform different functions. The contributions of bacteriorhodopsin to our understanding of the structure and function of membrane proteins have been, and will no doubt continue to be, spectacular. As descriptions of the properties of the other two halobacterial retinal pigments are now becoming available, they promise to provide further insights into how membrane proteins function. [Pg.318]


See other pages where Halobacteria membrane function is mentioned: [Pg.111]    [Pg.482]    [Pg.315]    [Pg.316]    [Pg.324]    [Pg.339]    [Pg.326]    [Pg.334]    [Pg.1]    [Pg.131]    [Pg.29]   
See also in sourсe #XX -- [ Pg.287 ]




SEARCH



Functionalized membrane

Membranes functions

Membranes, functional

© 2024 chempedia.info