Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Group-transfer reactions, copper compounds

There are several excellent photosensitizers one of them is [Ru(bpy)3]2+ [6]. There are two optical isomers in this complex one is A [Ru(bpy)3]2+ and the other is A-[Ru(bpy)3]2 +, as shown in Scheme 1. Thus one can expect to perform the stereoselective electron transfer reaction with A- and A-[Ru(bpy)3]2 +. Unfortunately, however, the racemization of [Ru(bpy)3]2+ is induced photochemically [7]. The reasonable way to suppress the photoracemiza-tion of this complex is to introduce the optically active organic functional group into the transition metal complexes, as will be discussed in Sec. II.B. The other photosensitizer that is useful for the photoinduced electron transfer reaction is the copper(I) complexes with 1,10-phenanthroline and their derivatives [8,9]. Zinc(II) porphyrin is also an excellent photosensitizer for photoinduced electron transfer reaction [10]. In these complexes, molecular chirality does not exist, unlike in [Ru(bpy)3]2 +. Thus one must introduce some chiral functional group into these compounds, to use these complexes as chiral photosensitizers. [Pg.263]

Laccases (benzenediohoxygen oxidoreductases, EC 1.10.3.2) are a diverse group of multi-copper enzymes, which catalyze oxidation of a variety of aromatic compounds. Laccases oxidize their substrates by a one-electron transfer mechanism. They use molecular oxygen as the electron acceptor. The substrate loses a single electron and usually forms a firee radical. The unstable radical may undergo further laccase-catalysed oxidation or non-enzymatic reactions including hydration, disproportionation, and polymerisation. ... [Pg.256]

Methods for the preparation of air stable trimethylsilyl substituted trivinylboranes and 9-halo-9-borafluorenes (which are readily converted into methoxy, methylthio and diethyl amino derivatives) have been published. The ability of various cuprates to transfer organo groups to 9-BBN has been investigated and the reactions of aromatic organo copper compounds with organoboranes probed. ... [Pg.30]

Apparently the alkoxy radical, R O , abstracts a hydrogen from the substrate, H, and the resulting radical, R" , is oxidized by Cu " (one-electron transfer) to form a carbonium ion that reacts with the carboxylate ion, RCO - The overall process is a chain reaction in which copper ion cycles between + 1 and +2 oxidation states. Suitable substrates include olefins, alcohols, mercaptans, ethers, dienes, sulfides, amines, amides, and various active methylene compounds (44). This reaction can also be used with tert-huty peroxycarbamates to introduce carbamoyloxy groups to these substrates (243). [Pg.131]

Intermediates such as 224 resulting from the nudeophilic addition of C,H-acidic compounds to allenyl ketones such as 222 do not only yield simple addition products such as 225 by proton transfer (Scheme 7.34) [259]. If the C,H-acidic compound contains at least one carbonyl group, a ring dosure is also possible to give pyran derivatives such as 226. The reaction of a similar allenyl ketone with dimethyl mal-onate, methyl acetoacetate or methyl cyanoacetate leads to a-pyrones by an analogous route however, the yields are low (20-32%) [260], The formation of oxaphos-pholenes 229 from ketones 227 and trivalent phosphorus compounds 228 can similarly be explained by nucleophilic attack at the central carbon atom of the allene followed by a second attack of the oxygen atom of the ketone at the phosphorus atom [261, 262], Treatment of the allenic ester 230 with copper(I) chloride and tributyltin hydride in N-methylpyrrolidone (NMP) affords the cephalosporin derivative 232 [263], The authors postulated a Michael addition of copper(I) hydride to the electron-... [Pg.389]

Various transition metals have been used in redox processes. For example, tandem sequences of cyclization have been initiated from malonate enolates by electron-transfer-induced oxidation with ferricenium ion Cp2pe+ (51) followed by cyclization and either radical or cationic termination (Scheme 41). ° Titanium, in the form of Cp2TiPh, has been used to initiate reductive radical cyclizations to give y- and 5-cyano esters in a 5- or 6-exo manner, respectively (Scheme 42). The Ti(III) reagent coordinates both to the C=0 and CN groups and cyclization proceeds irreversibly without formation of iminyl radical intermediates.The oxidation of benzylic and allylic alcohols in a two-phase system in the presence of r-butyl hydroperoxide, a copper catalyst, and a phase-transfer catalyst has been examined. The reactions were shown to proceed via a heterolytic mechanism however, the oxidations of related active methylene compounds (without the alcohol functionality) were determined to be free-radical processes. [Pg.143]


See other pages where Group-transfer reactions, copper compounds is mentioned: [Pg.329]    [Pg.329]    [Pg.329]    [Pg.43]    [Pg.175]    [Pg.233]    [Pg.220]    [Pg.293]    [Pg.94]    [Pg.306]    [Pg.196]    [Pg.156]    [Pg.49]    [Pg.202]    [Pg.847]    [Pg.45]    [Pg.333]    [Pg.50]    [Pg.264]    [Pg.124]    [Pg.289]    [Pg.874]    [Pg.71]    [Pg.223]    [Pg.652]    [Pg.390]    [Pg.359]    [Pg.52]    [Pg.134]    [Pg.454]    [Pg.565]    [Pg.481]    [Pg.52]    [Pg.134]    [Pg.902]    [Pg.1022]    [Pg.130]    [Pg.280]   


SEARCH



Copper compounds

Group transfer reactions reaction

Reaction group transfer

© 2024 chempedia.info