Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glassy polymers description

In glassy polymers tire interactions of tire penetrant molecules witli tire polymer matrix differ from one sorjDtion site to anotlier. A limiting description of tire interaction distribution is known under tire name of tire dual-soriDtion model [, 60]. In tliis model, tire concentration of tire penetrant molecules consists of two parts. One obeys Henry s law and tire otlier a Langmuir isotlienn ... [Pg.2536]

The other class of motion only now being introduced into interpretive models is oscillatory motion. Anisotropic oscillatory motions of substituent groups have been considered by Chachaty (12) but not in conjunction with a lattice description of backbone motion. No attempt to develop a model based on oscillatory backbone rearrangements is known to these authors, and this avenue may be very important for the interpretation of concentrated solutions, rubbery or amorphous solids, and especially glassy polymers... [Pg.285]

Section IIA summarizes the physical assumptions and the resulting mathematical descriptions of the "concentration-dependent (5) and "dual-mode" ( 13) sorption and transport models which describe the behavior of "non-ideal" penetrant-polymer systems, systems which exhibit nonlinear, pressure-dependent sorption and transport. In Section IIB we elucidate the mechanism of the "non-ideal" diffusion in glassy polymers by correlating the phenomenological diffusion coefficient of CO2 in PVC with the cooperative main-chain motions of the polymer in the presence of the penetrant. We report carbon-13 relaxation measurements which demonstrate that CO2 alters the cooperative main-chain motions of PVC. These changes correlate with changes in the diffusion coefficient of CO2 in the polymer, thus providing experimental evidence that the diffusion coefficient is concentration dependent. [Pg.96]

Local density fluctuations occur in penetrant polymer systems both above and below Tg. It is then reasonable to expect that a free-volume diffusion model should also provide an adequate description of the diffusion of small penetrants in glassy polymers. To reach this goal the free-volume model for diffusion of small penetrants in rubbery polymers, second part of Section 5.1.1, was modified to include transport below Tg (64,65,72,91-93). [Pg.138]

The formulation above is assumed to hold for temperatures up to the glass transition Tg. For T > Tg, most studies found in the literature focus on the description of the molten state [14] due to its practical importance, while little attention is paid to the response of glassy polymers in the rubbery state, near Tg. For strain rates larger than 1 s 1, the mechanical response of the molten material is non-Newtonian for most polymers and described by r = qym, where q and m are material parameters. We assume that this non-Newtonian response prevails as soon as Tg is exceeded. Hence, within the same framework as used below Tg, the equivalent plastic strain rate (Eq. 3) is replaced by... [Pg.201]

Following the studies on craze initiation, several efforts have focused on the description of glassy polymer fracture, and especially on the characteristics of a craze developed at a crack tip. Kambour [16] has shown that the length and thickness of a craze developed at the tip of a preexisting crack can be measured by interferometry and quantitative predictions have been reported in [29,30,38],... [Pg.207]

We present a finite element study which includes both shear yielding and crazing within a finite strain description. This provides a way of putting together all aspects of glassy polymer fracture crazing and shear yielding but also thermal effects. [Pg.218]

A description of crazing with a cohesive surface appears appropriate for the crazes observed in glassy polymers, since the trends reported experimentally are quite well captured. The cohesive surface model distinguishes the three steps of crazing (initiation, thickening, and breakdown) and is flexible enough to incorporate more sophisticated formulations of one of these stages when available. [Pg.232]

On the other hand, in glassy polymers the zone of crack tip yielding is often found to be a thin wedge rather than a circle. It is now well documented that a good description of the shape and size of this yielded zone at the crack tip can be provided by the plastic zone size model proposed by Dugdale and by the cohesive force model of Barenblatt " . Similar solutions and further developments have been contributed by other authors... [Pg.109]

Considerable effort has been made during the last two decades to develop a "microscopic" description of gas diffusion in polymers, which is more detailed than the simplified continuum viewpoint of Fick s laws. It has been known for a long time that the mechanism of diffusion is very different in "rubbery" and "glassy" polymers, i.e., at temperatures above and below the glass-transition temperature, Tg, of the polymers, respectively. This is due to the fact that glassy polymers are not in a true state of thermodynamic equilibrium, cf. refs. (1,3,5,7-11). Some of the models and theories that have been proposed to describe gas diffusion in rubbery and glassy polymers are discussed below. The models selected for presentation in this review reflect only the authors present interests. [Pg.25]

A phenomenological theory known as the "dual-mode sorption" model offers a satisfactory description of the dependence of diffusion coefficients, as well as of solubility and permeability coefficients, on penetrant concentration (or pressure) in glassy polymers (4-6,40-44). This model postulates that a gas dissolved in a glassy polymer consists of two distinct molecular populations ... [Pg.38]

An overview of the physics of glassy polymers and the relationships between molecular mechanisms and macroscopic physical, mechanical and transport properties of polymer glasses is presented. The importance of local translational and/or rotational motions of molecular segments in the glass is discussed in terms of the implications for thermodynamic descriptions of the glass (configurational states and energy surfaces) as well as history dependent properties such as expansivity, refractive index, gas permeability, and viscoelastic mechanical behaviour. [Pg.2]

In contrast to the LCP results just presented, in glassy polymers used as gas separation membranes, free volume influences diffusion coefficients much more than solubility coefficients. Figure 6 provides an example of this effect. In this figure, the solubility, diffusivity, and permeability of methane in a series of glassy, aromatic, amorphous poly(isophthalamides) [PIPAs] are presented as a function of the fractional free volume in the polymer matrix. (More complete descriptions of the transport properties of this family of materials are available elsewhere (59, 40)). The fractional free volume is manipulated systematically in this family of glassy polymers by synthesizing polymers with different substituent and backbone elements as shown in... [Pg.316]


See other pages where Glassy polymers description is mentioned: [Pg.24]    [Pg.115]    [Pg.137]    [Pg.102]    [Pg.120]    [Pg.131]    [Pg.131]    [Pg.113]    [Pg.126]    [Pg.137]    [Pg.195]    [Pg.200]    [Pg.201]    [Pg.203]    [Pg.212]    [Pg.477]    [Pg.284]    [Pg.90]    [Pg.22]    [Pg.159]    [Pg.164]    [Pg.238]    [Pg.56]    [Pg.90]    [Pg.84]    [Pg.2]    [Pg.2]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Glassy polymers

POLYM, description

© 2024 chempedia.info