Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glass transition temperature composition

Figure 3. Glass transition temperature-composition plots for various SANHS/MA MM blends to illustrate miscibility behavior. Figure 3. Glass transition temperature-composition plots for various SANHS/MA MM blends to illustrate miscibility behavior.
Table I. Glass Transition Temperatures, Compositions, and Reaction Conditions of Some Dichlorocarbene Adducts of Cis- and Trans- Polybutadiene... Table I. Glass Transition Temperatures, Compositions, and Reaction Conditions of Some Dichlorocarbene Adducts of Cis- and Trans- Polybutadiene...
Segard, E., Benmedakhene, S. Laksimi, A, and Lai, D., Influence of the fibre-matrix interface on the behaviour of polypropylene reinforced by short glass fibres above glass transition temperature Composites Science and Technology, 62 p. 2029-2036, 2002. [Pg.433]

Homogeneous alloys have a single glass transition temperature which is determined by the ratio of the components. The physical properties of these alloys are averages based on the composition of the alloy. [Pg.1014]

Table 1 shows that most acryflcs have low glass-transition temperatures. Therefore, in copolymers they tend to soften and flexibHize the overall composition. Plasticizers also lower the transition temperature. However, unlike incorporated acryflc comonomers, they can be lost through volatilization or extraction. [Pg.163]

Solution Polymers. Acryflc solution polymers are usually characterized by their composition, solids content, viscosity, molecular weight, glass-transition temperature, and solvent. The compositions of acryflc polymers are most readily determined by physicochemical methods such as spectroscopy, pyrolytic gas—liquid chromatography, and refractive index measurements (97,158). The solids content of acryflc polymers is determined by dilution followed by solvent evaporation to constant weight. Viscosities are most conveniently determined with a Brookfield viscometer, molecular weight by intrinsic viscosity (158), and glass-transition temperature by calorimetry. [Pg.171]

Since successful commercialization of Kapton by Du Pont Company in the 1960s (10), numerous compositions of polyimide and various new methods of syntheses have been described in the Hterature (1—5). A successful result for each method depends on the nature of the chemical components involved in the system, including monomers, intermediates, solvents, and the polyimide products, as well as on physical conditions during the synthesis. Properties such as monomer reactivity and solubiHty, and the glass-transition temperature,T, crystallinity, T, and melt viscosity of the polyimide products ultimately determine the effectiveness of each process. Accordingly, proper selection of synthetic method is often critical for preparation of polyimides of a given chemical composition. [Pg.396]

Relatively few processible polyimides, particularly at a reasonable cost and iu rehable supply, are available commercially. Users of polyimides may have to produce iutractable polyimides by themselves in situ according to methods discussed earlier, or synthesize polyimides of unique compositions iu order to meet property requirements such as thermal and thermoxidative stabilities, mechanical and electrical properties, physical properties such as glass-transition temperature, crystalline melting temperature, density, solubility, optical properties, etc. It is, therefore, essential to thoroughly understand the stmcture—property relationships of polyimide systems, and excellent review articles are available (1—5,92). [Pg.405]

The highly polar nature of the TGMDA—DDS system results in high moisture absorption. The plasticization of epoxy matrices by absorbed water and its effect on composite properties have been well documented. As can be seen from Table 4, the TGMDA system can absorb as much as 6.5% (by weight) water (4). This absorbed water results in a dramatic drop in both the glass transition temperature and hot—wet flexural modulus (4—6). [Pg.21]

Fig. 3. Elastomer properties as a function of monomer composition, butyl acrylate (BA), ethyl acrylate (FA), and methoxyethyl acrylate (MEA). (a), (—) glass-transition temperature (------------) swelling in ASTM No. 3 oil (b) (-) residual elongation at break, %, after heat aging. Fig. 3. Elastomer properties as a function of monomer composition, butyl acrylate (BA), ethyl acrylate (FA), and methoxyethyl acrylate (MEA). (a), (—) glass-transition temperature (------------) swelling in ASTM No. 3 oil (b) (-) residual elongation at break, %, after heat aging.
Thermal Properties. Thermal properties include heat-deflection temperature (HDT), specific heat, continuous use temperature, thermal conductivity, coefficient of thermal expansion, and flammability ratings. Heat-deflection temperature is a measure of the minimum temperature that results in a specified deformation of a plastic beam under loads of 1.82 or 0.46 N/mm (264 or 67 psi, respectively). Eor an unreinforced plastic, this is typically ca 20°C below the glass-transition temperature, T, at which the molecular mobility is altered. Sometimes confused with HDT is the UL Thermal Index, which Underwriters Laboratories estabflshed as a safe continuous operation temperature for apparatus made of plastics (37). Typically, UL temperature indexes are significantly lower than HDTs. Specific heat and thermal conductivity relate to insulating properties. The coefficient of thermal expansion is an important component of mold shrinkage and must be considered when designing composite stmctures. [Pg.264]

The glass transition temperature of a random copolymer usually falls between those of the corresponding homopolymers since the copolymers will tend to have intermediate chain stiffness and interchain attraction. Where these are the only important factors to be considered a linear relationship between Tg and copolymer composition is both reasonable to postulate and experimentally verifiable. One form of this relationship is given by the equation... [Pg.63]

In a semicrystalline polymer, the crystals are embedded in a matrix of amorphous polymer whose properties depend on the ambient temperature relative to its glass transition temperature. Thus, the overall elastic properties of the semicrystalline polymer can be predicted by treating the polymer as a composite material... [Pg.506]

When the temperamre is lowered, rubbers become stiff and brittle. All rubbers eventually stiffen to a rigid, amorphous glass at the glass transition temperature (Tg). This temperature also indicates the low-temperature service limit of the rubber. Tg values are dependent on the structure, degree of cross-linking (vulcanization) and isomeric composition of the rubber. [Pg.580]


See other pages where Glass transition temperature composition is mentioned: [Pg.776]    [Pg.171]    [Pg.69]    [Pg.150]    [Pg.163]    [Pg.44]    [Pg.270]    [Pg.136]    [Pg.301]    [Pg.332]    [Pg.368]    [Pg.408]    [Pg.415]    [Pg.477]    [Pg.38]    [Pg.57]    [Pg.431]    [Pg.497]    [Pg.21]    [Pg.31]    [Pg.35]    [Pg.103]    [Pg.183]    [Pg.233]    [Pg.267]    [Pg.277]    [Pg.561]    [Pg.1156]    [Pg.360]    [Pg.48]    [Pg.35]    [Pg.46]    [Pg.473]   
See also in sourсe #XX -- [ Pg.173 , Pg.174 ]

See also in sourсe #XX -- [ Pg.106 , Pg.108 ]




SEARCH



Composite glass transition

Composite temperature

Glass compositions

© 2024 chempedia.info