Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

From different sources physicochemical parameters

The behavior of MTBE through the different environmental compartments has been investigated using various modelling approaches. For example, the EU risk assessment used the simplest type of fugacity models (a Level 1 model) and concluded that from diffuse sources 93.9% of MTBE is in the air phase, 6.0% in the water phase, and 0.05% in the soil phase [2]. However, another study by Environment Canada for Southern Ontario [61] used the Level III model and predicted 56% of MTBE in the air, 42% in surface water, and 0.5% in soil and sediment. As can be observed, models developed so far differed in their predictions of relative MTBE concentrations for relevant environmental compartments and of seasonal concentration variations further, they have hardly considered the formation of transformation products [62]. Moreover, limitations in pollutant environmental data or key physicochemical parameters often make it difficult to validate model predictions. [Pg.53]

As a result, a physicochemical model for the formation of the BIF is proposed which is consistent with modern ideas on the evolution of sedimentation and volcanism and of the atmosphere, hydrosphere, and biosphere in the Precambrian. This model, which proposes a mainly volcanic source for the iron and silica and a biochemical and chemical mechanism of deposition, is the most likely but not the only possible one. Other versions, or different interpretations, are not ruled out, but it is perfectly obvious that in any genetic postulates, the specific physicochemical data must be taken into account. It is also quite understandable that in a work which is a first attempt at physicochemical analysis of the entire geological cycle— source of the material transport deposition diagenesis metamorphism—not all the problems have been worked out in sufficient detail and not all the evidence is conclusive far from it. Further investigations in this direction are needed, including not only determination of the role of the individual parameters in ore formation, but also direct experimental modeling of the process. [Pg.320]

Let us examine the relationship between boiling point and molecular size more closely. Table 11.1 comprises physicochemical information on a number of materials that are or have been used in the fragrance industry. The data were drawn from a number of sources, and some of the parameters e.g. log P and sp which are described later) were calculated from specific mathematical models, so that slightly different... [Pg.190]


See other pages where From different sources physicochemical parameters is mentioned: [Pg.104]    [Pg.189]    [Pg.125]    [Pg.268]    [Pg.38]    [Pg.532]    [Pg.35]    [Pg.3]    [Pg.33]    [Pg.431]   
See also in sourсe #XX -- [ Pg.43 , Pg.67 ]




SEARCH



Differences, sources

From different sources

© 2024 chempedia.info