Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fractal structures dielectric relaxation

The third relaxation process is located in the low-frequency region and the temperature interval 50°C to 100°C. The amplitude of this process essentially decreases when the frequency increases, and the maximum of the dielectric permittivity versus temperature has almost no temperature dependence (Fig 15). Finally, the low-frequency ac-conductivity ct demonstrates an S-shape dependency with increasing temperature (Fig. 16), which is typical of percolation [2,143,154]. Note in this regard that at the lowest-frequency limit of the covered frequency band the ac-conductivity can be associated with dc-conductivity cio usually measured at a fixed frequency by traditional conductometry. The dielectric relaxation process here is due to percolation of the apparent dipole moment excitation within the developed fractal structure of the connected pores [153,154,156]. This excitation is associated with the selfdiffusion of the charge carriers in the porous net. Note that as distinct from dynamic percolation in ionic microemulsions, the percolation in porous glasses appears via the transport of the excitation through the geometrical static fractal structure of the porous medium. [Pg.40]

The fractional derivative technique is used for the description of diverse physical phenomena (e.g., Refs. 208-215). Apparently, Blumen et al. [189] were the first to use fractal concepts in the analysis of anomalous relaxation. The same problem was treated in Refs. 190,194,200-203, again using the fractional derivative approach. An excellent review of the use of fractional derivative operators for the analysis of various physical phenomena can be found in Ref. 208. Yet, however, there seems to be little understanding of the relationship between the fractional derivative operator and/or differential equations derived therefrom (which are used for the description of various transport phenomena, such as transport of a quantum particle through a potential barrier in fractal structures, or transmission of electromagnetic waves through a medium with a fractal-like profile of dielectric permittivity, etc.), and the fractal dimension of a medium. [Pg.237]

Thus, the non-Debye dielectric behavior in silica glasses and PS is similar. These systems exhibit an intermediate temperature percolation process associated with the transfer of the electric excitations through the random structures of fractal paths. It was shown that at the mesoscale range the fractal dimension of the complex material morphology (Dr for porous glasses and porous silicon) coincides with the fractal dimension Dp of the path structure. This value can be obtained by fitting the experimental DCF to the stretched-exponential relaxation law (64). [Pg.64]

Our review starts with the general formulation of the GGS model in Sect. 2. In the framework of the GGS approach many dynamical quantities of experimental relevance can be expressed through analytical equations. Because of this, in Sect. 3 we outline the derivation of such expressions for the dynamical shear modulus and the viscosity, for the relaxation modulus, for the dielectric susceptibility, and for the displacement of monomers under external forces. Section 4 provides a historical retrospective of the classical Rouse model, while emphasizing its successes and limitations. The next three sections are devoted to the dynamical properties of several classes of polymer networks, ranging from regular and fractal networks to network models which take into account structural heterogeneities encountered in real systems. Sections 8 and 9 discuss dendrimers, dendritic polymers, and hyperbranched polymers. [Pg.174]


See other pages where Fractal structures dielectric relaxation is mentioned: [Pg.148]    [Pg.586]    [Pg.306]    [Pg.744]    [Pg.148]    [Pg.335]    [Pg.127]   
See also in sourсe #XX -- [ Pg.237 , Pg.238 , Pg.239 , Pg.240 , Pg.241 , Pg.242 , Pg.243 , Pg.244 , Pg.245 ]

See also in sourсe #XX -- [ Pg.237 , Pg.238 , Pg.239 , Pg.240 , Pg.241 , Pg.242 , Pg.243 , Pg.244 , Pg.245 ]




SEARCH



Dielectric relaxation

Dielectric structure

Fractal structure

Relaxation fractal structures

Structural relaxation

© 2024 chempedia.info