Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform catalysts

Figure 8.40 The k ySk) extended X-ray absorption fine structure (EXAFS) signal, Fourier transformed and then retransformed after application of the filter window indicated, in (a) osmium metal and (b) a 1% osmium catalyst supported on silica. (Reproduced, with permission, Ifom Winnick, FI. and Doniach, S. (Eds), Synchrotron Radiation Research, p. 413, Plenum, New York, 1980)... Figure 8.40 The k ySk) extended X-ray absorption fine structure (EXAFS) signal, Fourier transformed and then retransformed after application of the filter window indicated, in (a) osmium metal and (b) a 1% osmium catalyst supported on silica. (Reproduced, with permission, Ifom Winnick, FI. and Doniach, S. (Eds), Synchrotron Radiation Research, p. 413, Plenum, New York, 1980)...
Friedel-Crafts catalysts, 329, 331 Friedel-Crafts reaction, 297, 361 Front-end reactions, 235 FT Raman spectroscopy, 387 FTIR spectrometry. See Fourier transform infrared (FTIR) spectrometry Fuel cells, 272-273 Full prepolymers, 236, 237 Functionalized polyolefins, 459-460... [Pg.584]

When applied to the XRD patterns of Fig. 4.5, average diameters of 4.2 and 2.5 nm are found for the catalysts with 2.4 and 1.1 wt% Pd, respectively. X-ray line broadening provides a quick but not always reliable estimate of the particle size. Better procedures to determine particle sizes from X-ray diffraction are based on line-profile analysis with Fourier transform methods. [Pg.133]

Figure 4.12. Rh-EXAFS Fourier transforms of Rh/Al203 catalysts after reduction at 200 °C and 400 °C, showing a dominant contribution from Rh nearest-neighbors at 0.27 nm and contributions from oxygen neighbors in Rh203... Figure 4.12. Rh-EXAFS Fourier transforms of Rh/Al203 catalysts after reduction at 200 °C and 400 °C, showing a dominant contribution from Rh nearest-neighbors at 0.27 nm and contributions from oxygen neighbors in Rh203...
The copper EXAFS of the ruthenium-copper clusters might be expected to differ substantially from the copper EXAFS of a copper on silica catalyst, since the copper atoms have very different environments. This expectation is indeed borne out by experiment, as shown in Figure 2 by the plots of the function K x(K) vs. K at 100 K for the extended fine structure beyond the copper K edge for the ruthenium-copper catalyst and a copper on silica reference catalyst ( ). The difference is also evident from the Fourier transforms and first coordination shell inverse transforms in the middle and right-hand sections of Figure 2. The inverse transforms were taken over the range of distances 1.7 to 3.1A to isolate the contribution to EXAFS arising from the first coordination shell of metal atoms about a copper absorber atom. This shell consists of copper atoms alone in the copper catalyst and of both copper and ruthenium atoms in the ruthenium-copper catalyst. [Pg.257]

Figure 2. Normalized EXAFS data (copper K absorption edge) at 100°K, with associated Fourier transforms and inverse transforms, for silica supported copper and ruthenium-copper catalysts. Reproduced with permission from Ref. 8. Copyright 1980, American Institute of Physics. Figure 2. Normalized EXAFS data (copper K absorption edge) at 100°K, with associated Fourier transforms and inverse transforms, for silica supported copper and ruthenium-copper catalysts. Reproduced with permission from Ref. 8. Copyright 1980, American Institute of Physics.
Figure 2. Fhase adjusted Fourier transforms of Ft metal, 1% Ft/ Cabosil catalyst in H2 and 0.5% Ft/Cabosil catalyst in H2, all at 90 K. All are plotted to the same scale to emphasize the diminished magnitude because of the smaller average coordination numbers in the catalysts. The INSET shows the Ft-0 peak area retransformed with the appropriate Ft-0 phase shift. The artifact at low R is due to the EXAFS extraction procedure. Figure 2. Fhase adjusted Fourier transforms of Ft metal, 1% Ft/ Cabosil catalyst in H2 and 0.5% Ft/Cabosil catalyst in H2, all at 90 K. All are plotted to the same scale to emphasize the diminished magnitude because of the smaller average coordination numbers in the catalysts. The INSET shows the Ft-0 peak area retransformed with the appropriate Ft-0 phase shift. The artifact at low R is due to the EXAFS extraction procedure.
The infrared absorbance spectra were recorded at room temperature on a Fourier transform spectrophotometer (Biucker I.F.S. 110) with a resolution of 4 cm To compare the integrated adsorbances of the various samples the weight of the pellet and the Pd content were considered. The samples were placed in a heatable cell where the catalysts were treated "in situ". Different kinds of experiments were carried out ... [Pg.347]

The IR spectra in Fig.7 indicate the preferential adsorption of NO on the Co sites. It may be conjectured that the Mo sulfide species are physically covered by the Co sulfide species or that Co-Mo mixed sulfide species are formed and the chemical natures of the Co and Mo sulfides are mutually modified. The Mo K-edge EXAFS spectra were measured to examine the formation of mixed sulfide species between Co and Mo sulfides. The Fourier transforms are presented in Fig.8 for MoSx/NaY and CoSx-MoSx/NaY. The structural parameters derived from EXAFS analysis are summarized in Table 1. The structure and dispersion of the Mo sulfides in MoSx/NaY are discussed above. With the Co-Mo binary sulfide catalyst, the Mo-Co bondings are clearly observed at 0.283 nm in addition to the Mo-S and Mo-Mo bondings. The Mo-Co distance is close to that reported by Bouwens et al. [7] for a CoMoS phase supported on activated carbon. Detailed analysis of the EXAFS results for CoSx-MoSx/NaY will be presented elsewhere. It is concluded that the Co-Mo mixed sulfides possessing Co-S-Mo chemical bondings are formed in CoSx-MoSx/NaY. [Pg.509]

At present, most workers hold a more realistic view of the promises and difficulties of work in electrocatalysis. Starting in the 1980s, new lines of research into the state of catalyst surfaces and into the adsorption of reactants and foreign species on these surfaces have been developed. Techniques have been developed that can be used for studies at the atomic and molecular level. These techniques include the tunneling microscope, versions of Fourier transform infrared spectroscopy and of photoelectron spectroscopy, differential electrochemical mass spectroscopy, and others. The broad application of these techniques has considerably improved our understanding of the mechanism of catalytic effects in electrochemical reactions. [Pg.553]

We have found new CO-tolerant catalysts by alloying Pt with a second, nonprecious, metal (Pt-Fe, Pt-Co, Pt-Ni, etc.) [Fujino, 1996 Watanabe et al., 1999 Igarashi et al., 2001]. In this section, we demonstrate the properties of these new alloy catalysts together with Pt-Ru alloy, based on voltammetric measurements, electrochemical quartz crystal microbalance (EQCM), electrochemical scanning tunneling microscopy (EC-STM), in situ Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). [Pg.318]

Although acetone was a major product, it was not observed by infrared spectroscopy. Flowing helium/acetone over the catalyst at room temperature gave a prominent carbonyl band at 1723 cm 1 (not show here). In this study, a DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) cell was placed in front of a fixed reactor DRIFTS only monitored the adsorbed and gaseous species in the front end of the catalyst bed. The absence of acetone s carbonyl IR band in Figure 3 and its presence in the reactor effluent suggest the following possibilities (i) acetone formation from partial oxidation is slower than epoxidation to form PO and/or (ii) acetone is produced from a secondary reaction of PO. [Pg.407]

The strength of the Bronsted (BAS) and Lewis (LAS) acid sites of the pure and synthesized materials was measured by Fourier transformed infrared spectroscopy (ATI Mattson FTIR) by using pyridine as a probe molecule. Spectral bands at 1545 cm 1 and 1450 cm 1 were used to indentify BAS and LAS, respectively. Quantitative determination of BAS and LAS was calculated with the coefficients reported by Emeis [5], The measurements were performed by pressing the catalyst into self supported wafers. Thereafter, the cell with the catalyst wafer was outgassed and heated to 450°C for lh. Background spectra were recorded at 100°C. Pyridine was then adsorbed onto the catalyst for 30 min followed by desorption at 250, 350 and 450°C. Spectra were recorded at 100°C in between every temperature ramp. [Pg.316]

Figure 6.10 shows Fourier transforms of Co K-edge EXAFS spectra of these calcined catalysts and polycrystalline Co oxides. Three peaks are clearly observed in EXAFS spectra of calcined Co(X)/Si02 catalysts at almost the same... [Pg.110]

These assumptions are partially different from those introduced in our previous model.10 In that work, in fact, in order to simplify the kinetic description, we assumed that all the steps involved in the formation of both the chain growth monomer CH2 and water (i.e., Equations 16.3 and 16.4a to 16.4e) were a series of irreversible and consecutive steps. Under this assumption, it was possible to describe the rate of the overall CO conversion process by means of a single rate equation. Nevertheless, from a physical point of view, this hypothesis implies that the surface concentration of the molecular adsorbed CO is nil, with the rate of formation of this species equal to the rate of consumption. However, recent in situ Fourier transform infrared (FT-IR) studies carried out on the same catalyst adopted in this work, at the typical reaction temperature and in an atmosphere composed by H2 and CO, revealed the presence of a significant amount of molecular CO adsorbed on the catalysts surface.17 For these reasons, in the present work, the hypothesis of the irreversible molecular CO adsorption has been removed. [Pg.308]

In this contribution, the steady-state isotopic transient kinetic analysis-diffuse reflectance Fourier transform spectroscopy (SSITKA-DRIFTS) method provides further support to the conclusion that not only are infrared active formates likely intermediates in the water-gas shift (WGS) reaction, in agreement with the mechanism proposed by Shido and Iwasawa for Rh/ceria, but designing catalysts based on formate C-H bond weakening can lead to significantly higher... [Pg.365]

Transmission infrared spectra of species adsorbed on the catalyst were taken with a Digilab FTS-10M Fourier-transform infrared spectrometer, using a resolution of 4 cm-l. To improve the signal-to-noise ratio, between 10 and 100 interferograms were co-added. Spectra of the catalyst taken following reduction in H2 were subtracted from spectra taken in the presence of NO to eliminate the spectrum of the support. Because of the very short optical path through the gas in the reactor and the low NO partial pressures used in these studies, the spectrum of gas-phase NO was extremely weak and did not interfere with the observation of the spectrum of adsorbed species. [Pg.109]

Better procedures for determining particle sizes from X-ray diffraction are based on line profile analysis with Fourier transform methods. The average size is obtained from the first derivative of the cosine coefficients and the distribution of particle sizes from the second derivative. When used in this way, XRD offers a fundamental advantage over electron microscopy, because it samples a much larger portion of the catalyst. The reader is referred to publications by Cohen and coworkers for more details and examples [4,10,11],... [Pg.156]

Figure 6.15 Ru and Cu K-edge EXAFS spectra at 100 K with Fourier transforms and inverse transforms of the first coordination shell of Ru/Si02, Cu/Si02 and Ru-Cu/Si02 catalysts. The inverse transforms correspond to distances between 1.7 and 3.1 A (from Sinfelt et al. [39]). Figure 6.15 Ru and Cu K-edge EXAFS spectra at 100 K with Fourier transforms and inverse transforms of the first coordination shell of Ru/Si02, Cu/Si02 and Ru-Cu/Si02 catalysts. The inverse transforms correspond to distances between 1.7 and 3.1 A (from Sinfelt et al. [39]).
Comparison of the Cu K-edge EXAFS signals for the monometallic Cu/Si02 and the bimetallic Ru-Cu/Si02 catalyst, on the other hand, provides clear evidence for the proximity of ruthenium to copper atoms in the latter. This is seen in the different shape of the measured EXAFS signal and the distorted inverse transform of the first coordination shell. Note that the intensity of the latter is weaker for the bimetallic catalyst, while the region between k=8 and k=15 A-1 has become more important, which points to the presence of a scattering atom heavier than copper in the first coordination shell. The reduced intensity in the Cu Fourier transform of the bimetallic catalyst is indicative of a lower coordination of the copper, which is characteristic of surface atoms. [Pg.173]

The Fourier transform of the Ru EXAFS of the Ru/Si02 catalyst under 02 is roughly 30% lower than that of the reduced catalyst, indicating that ruthenium atoms in the outer layer(s) are oxidized. The Fourier transform of Ru in the EXAFS of Ru-... [Pg.175]


See other pages where Fourier transform catalysts is mentioned: [Pg.333]    [Pg.224]    [Pg.273]    [Pg.359]    [Pg.143]    [Pg.257]    [Pg.428]    [Pg.505]    [Pg.514]    [Pg.520]    [Pg.463]    [Pg.99]    [Pg.133]    [Pg.138]    [Pg.181]    [Pg.263]    [Pg.231]    [Pg.242]    [Pg.37]    [Pg.96]    [Pg.113]    [Pg.122]    [Pg.128]    [Pg.138]    [Pg.159]    [Pg.173]    [Pg.174]    [Pg.175]   
See also in sourсe #XX -- [ Pg.283 , Pg.284 ]




SEARCH



Fourier transform infrared catalyst system

© 2024 chempedia.info