Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fock operator, wave function calculations

In his pioneering work Baetzold used the Hartree-Fock (HF) method for quantum mechanical calculations for the cluster structure (the details are summarized in Reference 33). The value of the HF procedure is that it yields the best possible single-determinant wave function, which in turn should give correct values for expectation values of single-particle operators such as electric moments and... [Pg.81]

How does a rigorously calculated electrostatic potential depend upon the computational level at which was obtained p(r) Most ab initio calculations of V(r) for reasonably sized molecules are based on self-consistent field (SCF) or near Hartree-Fock wavefunctions and therefore do not reflect electron correlation in the computation of p(r). It is true that the availability of supercomputers and high-powered work stations has made post-Hartree-Fock calculations of V(r) (which include electron correlation) a realistic possibility even for molecules with 5 to 10 first-row atoms however, there is reason to believe that such computational levels are usually not necessary and not warranted. The Mpller-Plesset theorem states that properties computed from Hartree-Fock wave functions using one-electron operators, as is T(r), are correct through first order (Mpller and Plesset 1934) any errors are no more than second-order effects. [Pg.54]

Functionals. The difference between the Fock operator, in wave function based calculations and the analogous operator in DFT calculations is that the Coulomb and exchange operators in T are replaced in DFT by a functional of the electron density. In principle, this functional should provide an exact formula for computing the Coulombic interactions between an electron in a KS orbital and all the other electrons in a molecule. To be exact, this functional must include corrections to the Coulombic repulsion energy, computed directly from the electron density, for exchange between electrons of the same spin and correlation between electrons of opposite spin. [Pg.978]

Calculations show that cross-sections obtained in the Hartree-Fock approximation utilizing length and velocity forms of the appropriate operator, may essentially differ from each other for transitions between neighbouring outer shells, particularly with the same n. However, they are usually close to each other in the case of photoionization or excitation from an inner shell whose wave function is almost orthogonal with the relevant function of the outer open shell. In dipole approximation an electron from a shell lN may be excited to V = l + 1, but the channel /— / + prevails. For configurations ni/f1 n2l 2 an important role is... [Pg.396]

In the frame of the simplest Hartry-Fock s approximation, the variation calculation of the scattering operator t E, 8) for a few atoms has been made in the articles [12-14]. However, the variation scheme permits taking into account the different configurations in the wave function of the united system of electron and the scatterer. The general form of the scattering operator t(E, 8 Q) is [9,13,14]... [Pg.49]

The method discussed here for the inclusion of relativistic effects in molecular electronic structure calculations is grounded in the Dirac-Fock approximation for atomic wave functions (29). The premise is that the major relativistic effects of the Dirac Hamiltonian are manifested in the core region, involving the core electrons, and that these effects propagate to the valence electrons. In addition, there are direct relativistic effects on valence electrons penetrating into the core region. Insofar as this is true, the valence electrons can be treated using a nonrelativistic Hamiltonian to which is added an operator, the relativistic effective core potential (REP). The REP formally, incorporates relativistic effects due to core electrons and to interactions of valence electrons with core electrons in an internally consistent way. [Pg.147]

Fig. 6. Average relativistic effective core potential and relativistic effective core potential energy curves for two states of Bi2. HF, Hartree-Fock GVB(pp), eight-configuration perfect-pairing generalized valence bond FVCI, full-valence Cl based on the GVB(pp) wave functions FV7R, full-valence Cl plus single and double promotions to virtual MOs relative to seven-dominant configurations. (The FVCI and FV7R calculations include the REP-based spin-orbit operator.)... Fig. 6. Average relativistic effective core potential and relativistic effective core potential energy curves for two states of Bi2. HF, Hartree-Fock GVB(pp), eight-configuration perfect-pairing generalized valence bond FVCI, full-valence Cl based on the GVB(pp) wave functions FV7R, full-valence Cl plus single and double promotions to virtual MOs relative to seven-dominant configurations. (The FVCI and FV7R calculations include the REP-based spin-orbit operator.)...
One guesses at an initial set of wave functions, , and constructs the Hartree-Fock Hamilton S which depends on the through the definitions of the Coulomb and exchange operators, (/ and One then calculates the new set of , and compares it (or the energy or the density matrix) to the input set (or to the energy or density matrix computed from the input set). This procedure is continued until the appropriate self-consistency is obtained. [Pg.123]

As in the ordinary EOMCC theory, in the EOMXCC method we solve the electronic Schrodinger equation (1) assuming that the excited states are represented by Eq. (7). We use the exponential representation of the ground-state wave function I S o), Eq. (8), but no longer assume that the cluster components Tn result from standard SRCC calculations (see below). The many-body expansions of the excitation operator Rk have the same form as in the ordinary EOMCC formalism. In particular, the three different forms of Rk discussed in the previous section [fi -E, R A, and REqs. (28), (30), and (26), respectively] are used to define the EE-EOMXCC, EA-EOMXCC, and IP-EOMXCC methods. As in the standard EOMCC method, by making suitable choices for the operators Qa, which define Rk, we can always extend the EOMXCC theory to other sectors of the Fock space. [Pg.313]


See other pages where Fock operator, wave function calculations is mentioned: [Pg.360]    [Pg.189]    [Pg.30]    [Pg.360]    [Pg.16]    [Pg.215]    [Pg.55]    [Pg.444]    [Pg.57]    [Pg.81]    [Pg.298]    [Pg.172]    [Pg.368]    [Pg.126]    [Pg.466]    [Pg.37]    [Pg.161]    [Pg.116]    [Pg.155]    [Pg.394]    [Pg.248]    [Pg.333]    [Pg.82]    [Pg.40]    [Pg.305]    [Pg.45]    [Pg.173]    [Pg.49]    [Pg.183]    [Pg.66]    [Pg.134]    [Pg.163]    [Pg.197]    [Pg.215]    [Pg.98]    [Pg.100]    [Pg.215]    [Pg.25]    [Pg.115]    [Pg.117]    [Pg.299]   


SEARCH



Fock operator

Function operator

Functionals, wave function calculations

Operators functional

Wave operator

Wave-function calculations

© 2024 chempedia.info