Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty acyl transferase

In addition to a role in symbiosis, the presence of the VLCFA may also be important for the life of the symbiont in the soil. Recently, it was shown that a mutant in genes encoding for the fatty acyl transferases that are in the five gene VLCFA cassette of R. leguminosarum biovar viciae 3841 also fail to incorporate VLCFA into their LA and they are also less resistance to desiccation, impaired in biofilm formation, and in motility (Vanderlinde et al., 2009). Thus, in addition to promoting rhizobial life inside the plant host, the presence of VLCFA in LPS may also be important for life of the symbiont in the soil. [Pg.375]

Several additional points should be made. First, although oxygen esters usually have lower group-transfer potentials than thiol esters, the O—acyl bonds in acylcarnitines have high group-transfer potentials, and the transesterification reactions mediated by the acyl transferases have equilibrium constants close to 1. Second, note that eukaryotic cells maintain separate pools of CoA in the mitochondria and in the cytosol. The cytosolic pool is utilized principally in fatty acid biosynthesis (Chapter 25), and the mitochondrial pool is important in the oxidation of fatty acids and pyruvate, as well as some amino acids. [Pg.783]

Consider the role of the pantothenic acid groups in animal fatty acyl synthase and the size of the pantothenic acid group itself, and estimate a maximal separation between the malonyl transferase and the ketoacyl-ACP synthase active sites. [Pg.850]

At this point, the acyl-CoA is still in the cytosol of the muscle cell. Entry of the acyl-CoA into the mitochondrial matrix requires two translocase enzymes, carnitine acyl transferase I and carnitine acyl transferase II (CAT I and CAT II), and a carrier molecule called carnitine the carnitine shuttles between the two membranes. The process of transporting fatty acyl-CoA into mitochondria is shown in Figure 7.15. [Pg.251]

Figure 7.11 Mechanism of transport of long-chain fatty adds across the inner mitochondrial membrane as fatty acyl carnitine. CRT is the abbreviation for carnitine palmitoyl transferase. CPT-I resides on the outer surface of the inner membrane, whereas CPT-II resides on the inner side of the inner membrane of the mitochondria. Transport across the inner membrane is achieved by a carrier protein known as a translocase. FACN - fatty acyl carnitine, CN - carnitine. Despite the name, CRT reacts with long-chain fatty acids other than palmitate. CN is transported out of the mitochondria by the same translocase. Figure 7.11 Mechanism of transport of long-chain fatty adds across the inner mitochondrial membrane as fatty acyl carnitine. CRT is the abbreviation for carnitine palmitoyl transferase. CPT-I resides on the outer surface of the inner membrane, whereas CPT-II resides on the inner side of the inner membrane of the mitochondria. Transport across the inner membrane is achieved by a carrier protein known as a translocase. FACN - fatty acyl carnitine, CN - carnitine. Despite the name, CRT reacts with long-chain fatty acids other than palmitate. CN is transported out of the mitochondria by the same translocase.
The initial acylation at the 1-position of glycerol 3-phosphate is catalysed by glycerol 3-phosphate acyl-transferase-1, abbreviated to GPAT-1. This enzyme is specific for a saturated fatty acid (in the acyl form). [Pg.227]

The third acylation is catalysed by diacylglycerol acyl-transferase (DGAT), which is less specific, so that an unsaturated or saturated fatty acid can be incorporated. The final product is as shown in Figure 11.7. [Pg.227]

Incorporation of different fatty acids into lipids depends on the relative abundance of their CoA derivatives and their acyl-transferase )< , values. The synthetic enzymes which form membrane phospholipids may select the acid by molecular features not in accord with the optimal physiological properties of the products (110), resulting in the formation of membranes which do not function adequately. [Pg.318]

Much of the cholesterol synthesis in vertebrates takes place in the liver. A small fraction of the cholesterol made there is incorporated into the membranes of he-patocytes, but most of it is exported in one of three forms biliary cholesterol, bile acids, or cholesteryl esters. Bile acids and their salts are relatively hydrophilic cholesterol derivatives that are synthesized in the liver and aid in lipid digestion (see Fig. 17-1). Cholesteryl esters are formed in the liver through the action of acyl-CoA-cholesterol acyl transferase (ACAT). This enzyme catalyzes the transfer of a fatty acid from coenzyme A to the hydroxyl group of cholesterol (Fig. 21-38), converting the cholesterol to a more hydrophobic form. Cholesteryl esters are transported in secreted lipoprotein particles to other tissues that use cholesterol, or they are stored in the liver. [Pg.820]

One enzyme regulated by AMPK is acetyl-CoA carboxylase, which produces malonyl-CoA, the first intermediate committed to fatty acid synthesis. Malonyl-CoA is a powerful inhibitor of the enzyme carnitine acyl-transferase I, which starts the process of ]3 oxidation by transporting fatty acids into the mitochondrion (see Fig. 17-6). By phosphorylating and inactivating acetyl-CoA carboxylase, AMPK inhibits fatty acid synthesis while relieving the inhibition (by malonyl-CoA) of )3 oxidation (Fig. 23-37). [Pg.914]

We were also able to use FAB mass spectrometry to determine the amino acid sequence around the active site serine in the acyl transference domain of rabbit mammary fatty acid synthase.6 The synthase was labelled in the acyl transferase domain(s) by the formation of O-ester intermediates after incubation with [" " C]-acetyl- or malonyl-CoA (Fig. 2A). The modified protein was then digested with elastase (Fig. 2B), and radioactive material isolated via successive purification steps on Sephadex G-50 and reverse phase HPLC. The isolated peptides were then sequenced by FAB MS. The data summarized in Table II established the sequences of both the acetyl and malonyl hexapeptides to be N-acyl-Ser-leu-Gly-Glu-Val-Ala. [Pg.221]

Figure 1 Polyketide biosynthesis. Polyketide backbones are formed via condensations from acyl-CoA thioesters of carboxylic acids. The (3-ketone which results from each condensation can undergo a series of reductive steps analogous to fatty acid biosynthesis. However, either none or only some of the reductive activities may occur in a given cycle. This allows PKSs to generate diversity through selection of priming and extender units, variation of the reductive cycle, and stereoselectivity. (ACP, acyl carrier protein AT, acyl transferase KS, ketosynthase DH, dehydratase ER, enoylreductase KR, ketoreductase TE, thioesterase.) The structure depicted in the lower right-hand corner is representative of the possible structural variations that can arise during polyketide biosynthesis. Figure 1 Polyketide biosynthesis. Polyketide backbones are formed via condensations from acyl-CoA thioesters of carboxylic acids. The (3-ketone which results from each condensation can undergo a series of reductive steps analogous to fatty acid biosynthesis. However, either none or only some of the reductive activities may occur in a given cycle. This allows PKSs to generate diversity through selection of priming and extender units, variation of the reductive cycle, and stereoselectivity. (ACP, acyl carrier protein AT, acyl transferase KS, ketosynthase DH, dehydratase ER, enoylreductase KR, ketoreductase TE, thioesterase.) The structure depicted in the lower right-hand corner is representative of the possible structural variations that can arise during polyketide biosynthesis.
Fig. 1. Targeted lipidomics of anandamide metabolism. Postulated pathways of anandamide metabolism. Abbreviations PC, phosphatidylcholine PE, phosphatidylethanolamine NAT, JV-acyl transferase LPA, lysophosphatidic acid PA, phosphatidic acid NAPE, jV-acyl-phosphatidylethanolamine Lyso-NAPE, l-lyso,2-acyl-OT-glycero-3-phosphoethanolamine-JV-acyl ABHD-4, a//3 hydrolase-4 GP-anandamide, glycerophospho-anandamide PAEA, phospho-anandamide PLA, phospholipase A NAPE-PLD, NAPE phospholipase D PLC, phospholipase C FAAH, fatty acid amide hydrolase P, phosphatase COX, cyclooxygenase LOX, lipoxygenase CYP450, cytochrome P450 PDE, phosphodiesterase. Fig. 1. Targeted lipidomics of anandamide metabolism. Postulated pathways of anandamide metabolism. Abbreviations PC, phosphatidylcholine PE, phosphatidylethanolamine NAT, JV-acyl transferase LPA, lysophosphatidic acid PA, phosphatidic acid NAPE, jV-acyl-phosphatidylethanolamine Lyso-NAPE, l-lyso,2-acyl-OT-glycero-3-phosphoethanolamine-JV-acyl ABHD-4, a//3 hydrolase-4 GP-anandamide, glycerophospho-anandamide PAEA, phospho-anandamide PLA, phospholipase A NAPE-PLD, NAPE phospholipase D PLC, phospholipase C FAAH, fatty acid amide hydrolase P, phosphatase COX, cyclooxygenase LOX, lipoxygenase CYP450, cytochrome P450 PDE, phosphodiesterase.
Answer The transport of fatty acid molecules into mitochondria requires a shuttle system involving a fatty acyl-carnitine intermediate. Fatty acids are first converted to fatty acyl-CoA molecules in the cytosol (by the action of acyl-CoA synthetases) then, at the outer mitochondrial membrane, the fatty acyl group is transferred to carnitine (by the action of carnitine acyl-transferase I). After transport of fatty acyl-carnitine through the inner membrane, the fatty acyl group is transferred to mitochondrial CoA. The cytosolic and mitochondrial pools of CoA are thus kept separate, and no labeled CoA from the cytosolic pool enters the mitochondrion. [Pg.188]

A low Km reflects a high affinity for the substrate, and a high Km, a low affinity. Lecithin-cholesterol acyl transferase is a transferase it transfers the fatty acyl group from lecithin to cholesterol. [Pg.122]

Fatty acyl CoA-glycerol-3-phosphate acyl transferase... [Pg.507]

The redbanded leafroller moth uses a mixture of (E) and (Z) -11-tetradecenyl acetates as pheromone components. The pheromone gland of this insect also contains an acetyl Co A fatty alcohol acyl transferase (22.). This enzyme will acetylate 12, 14 and 16 carbon alcohols, and prefers the saturated alcohol to the Z monounsaturated derivative, and the Z to the E, in the approximate ratios of 5 3 1 for saturated, Z and E, respectively. [Pg.322]


See other pages where Fatty acyl transferase is mentioned: [Pg.488]    [Pg.70]    [Pg.70]    [Pg.488]    [Pg.6]    [Pg.488]    [Pg.70]    [Pg.70]    [Pg.488]    [Pg.6]    [Pg.821]    [Pg.199]    [Pg.920]    [Pg.105]    [Pg.643]    [Pg.820]    [Pg.915]    [Pg.205]    [Pg.240]    [Pg.595]    [Pg.438]    [Pg.364]    [Pg.402]    [Pg.402]    [Pg.409]    [Pg.438]    [Pg.341]    [Pg.17]    [Pg.354]    [Pg.357]    [Pg.60]    [Pg.61]    [Pg.65]    [Pg.67]    [Pg.78]    [Pg.352]    [Pg.578]    [Pg.313]   
See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Acyl-transferase

Carnitine fatty acid acyl transferase

Fatty acyl

Fatty acyl carnitine transferase

Fatty acylation

Transferase fatty acid acyl

© 2024 chempedia.info