Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exponential ansatz, coupled-cluster technique

The exponential ansatz given in Eq. [31] is one of the central equations of coupled cluster theory. The exponentiated cluster operator, T, when applied to the reference determinant, produces a new wavefunction containing cluster functions, each of which correlates the motion of electrons within specific orbitals. If T includes contributions from all possible orbital groupings for the N-electron system (that is, T, T2, . , T ), then the exact wavefunction within the given one-electron basis may be obtained from the reference function. The cluster operators, T , are frequently referred to as excitation operators, since the determinants they produce from fl>o resemble excited states in Hartree-Fock theory. Truncation of the cluster operator at specific substi-tution/excitation levels leads to a hierarchy of coupled cluster techniques (e.g., T = Ti + f 2 CCSD T T + T2 + —> CCSDT, etc., where S, D, and... [Pg.42]

The projective techniques described above for solving the coupled cluster equations represent a particularly convenient way of obtaining the amplitudes that define the coupled cluster wavefunction, e o However, the asymmetric energy formula shown in Eq. [50] does not conform to any variational conditions in which the energy is determined from an expectation value equation. As a result, the computed energy will not be an upper bound to the exact energy in the event that the cluster operator, T, is truncated. But the exponential ansatz does not require that we solve the coupled cluster equations in this manner. We could, instead, construct a variational solution by requiring that the amplitudes minimize the expression ... [Pg.49]

There do exist recent quantum chemical techniques which are size consistent. Among them, the Random Phase Approximation (RPA), its variants such as the Second-Order Polarization Propagator Approximation (SOPPA) [10], and the Coupled Cluster Approximation (CCA) [11] axe the most prominent and being widely used. In the SOPPA method, electron correlation effects are included in the two-particle polarization propagator to second order. The coupled cluster method uses an exponential ansatz through which higher-order exci-... [Pg.124]

The coupled-cluster electronic state is uniquely defined by the set of the cluster amplitudes and these amplitudes are used to obtain the coupled-cluster energy from Eq. (33). Due to the fact that the Ansatz of the coupled-cluster wave function has the exponential parametrization [Eq. (28)] the energy is size-extensive. This is an obvious advantage of the coupled-cluster formalism compared to some other techniques (e.g. configuration interaction). For a general discussion of coupled-cluster theory and the coupled-cluster equations see Refs. [5, 36]. [Pg.12]


See other pages where Exponential ansatz, coupled-cluster technique is mentioned: [Pg.126]   
See also in sourсe #XX -- [ Pg.108 , Pg.109 , Pg.110 , Pg.111 , Pg.112 ]




SEARCH



Cluster coupled

Clustering Techniques

Coupled-cluster ansatz

Coupling techniques

Exponential ansatz

© 2024 chempedia.info