Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Explicitly correlated methods Hylleraas function

Unfortunately, extending Hylleraas s approach to systems containing three or more electrons leads to very cumbersome mathematics. More practical approaches, known as explicitly correlated methods, are classified into two categories. The first group of approaches uses Boys Gaussian-type geminal (GTG) functions with the explicit dependence on the interelectronic coordinate built into the exponent [95]... [Pg.237]

A method that avoids making the HF mistakes in the first place is called quantum Monte Carlo (QMC). There are several types of QMC variational, dilfusion, and Greens function Monte Carlo calculations. These methods work with an explicitly correlated wave function. This is a wave function that has a function of the electron-electron distance (a generalization of the original work by Hylleraas). [Pg.26]

The usual methods of theoretical atomic physics, such as the Hartree-Fock approximation or configuration interaction methods, are not capable of yielding results of spectroscopic accuracy. For this reason, specialized methods have been developed. As long ago as 1929, Hylleraas suggested expanding the wave function in an explicitly correlated variational basis set of the form... [Pg.40]

The family of variational methods with explicitly correlated functions includes the Hylleraas method, the Hyller-aas Cl method, the James-Coolidge and the KcAos-Wolniewicz approaches, as well as a method with exponentially correlated Gaussians. The method of explicitly correlated functions is very successful for two-, three-, and four-electron systems. For larger systems, due to the excessive number of complicated integrals, variational calculations are not yet feasible. [Pg.655]

Recently, impressive calculations using Hylleraas wave functions have been done for the H2 molecule by the Hylleraas method [44,63], the Iterative Complement Iteration (ICI) [36], and Explicitly Correlated Gaussian (ECG) [12] methods. Few molecules have yet been calculated using Hylleraas-type wave functions HeH+ and some other species [72] using the Hylleraas method, the helium dimer He2 interaction energy [46] and the ground state of the BH molecule [7], both using the ECG method. [Pg.105]

This contribution examines current approaches to Coulomb few-body problems mainly from a methodological perspective, in contrast to recent reviews which have focused on the results obtained for benchmark problems. The methods under discussion here employ wavefunctions which explicitly involve all the interparticle coordinates and use functional forms appropriate to nonadiabatic systems in which all the particles are of comparable mass. The use of such wavefunctions for states of arbitrary angular symmetry is reviewed, and the kinetic-energy operator, written in the interparticle coordinates, is presented in a convenient form. Evaluation of the resultant angular matrix elements is discussed in detail. For exponentially correlated wavefunctions, problems of integral evaluation are surveyed, the relatively new analytical procedures are summarized, and relations among matrix elements are presented. The current status of Gaussian-orbital and Hylleraas methods is also reviewed. [Pg.129]


See other pages where Explicitly correlated methods Hylleraas function is mentioned: [Pg.237]    [Pg.21]    [Pg.2358]    [Pg.173]    [Pg.134]    [Pg.276]    [Pg.546]    [Pg.229]    [Pg.215]   
See also in sourсe #XX -- [ Pg.266 ]




SEARCH



Correlating functions correlated methods

Correlation methods

Correlative methods

Explicit functions

Explicit method

Explicitly correlated methods

Explicitly correlated methods correlating functions

Explicitness

Functionalization methods

Hylleraas

Hylleraas Method

Hylleraas functional

Hylleraas functions

© 2024 chempedia.info