Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excited-state signal

Fig. 4.11. Hanle effect on the degree of linear polarization V = (/y — Iff/(I + Iff) at (P, f )-excitation 1 - superpositional signal calculated at the same conditions as Fig. 4.10, dots refer to the positions a, b, c, d as in Fig. 4.10 2 - pure excited state signal at x = 0 3 - pure ground state signal at gj> = 0 4 - experimentally measured dependence for Te2 under conditions as given in Fig. 4.6, curve 1, but in the region of weaker magnetic field and at strong pumping (x 3). Fig. 4.11. Hanle effect on the degree of linear polarization V = (/y — Iff/(I + Iff) at (P, f )-excitation 1 - superpositional signal calculated at the same conditions as Fig. 4.10, dots refer to the positions a, b, c, d as in Fig. 4.10 2 - pure excited state signal at x = 0 3 - pure ground state signal at gj> = 0 4 - experimentally measured dependence for Te2 under conditions as given in Fig. 4.6, curve 1, but in the region of weaker magnetic field and at strong pumping (x 3).
A suitable method for a detailed investigation of stimulated emission and competing excited state absorption processes is the technique of transient absorption spectroscopy. Figure 10-2 shows a scheme of this technique. A strong femtosecond laser pulse (pump) is focused onto the sample. A second ultrashort laser pulse (probe) then interrogates the transmission changes due to the photoexcita-lions created by the pump pulse. The signal is recorded as a function of time delay between the two pulses. Therefore the dynamics of excited state absorption as... [Pg.169]

Theory. If two or more fluorophores with different emission lifetimes contribute to the same broad, unresolved emission spectrum, their separate emission spectra often can be resolved by the technique of phase-resolved fluorometry. In this method the excitation light is modulated sinusoidally, usually in the radio-frequency range, and the emission is analyzed with a phase sensitive detector. The emission appears as a sinusoidally modulated signal, shifted in phase from the excitation modulation and partially demodulated by an amount dependent on the lifetime of the fluorophore excited state (5, Chapter 4). The detector phase can be adjusted to be exactly out-of-phase with the emission from any one fluorophore, so that the contribution to the total spectrum from that fluorophore is suppressed. For a sample with two fluorophores, suppressing the emission from one fluorophore leaves a spectrum caused only by the other, which then can be directly recorded. With more than two flurophores the problem is more complicated but a number of techniques for deconvoluting the complex emission curve have been developed making use of several modulation frequencies and measurement phase angles (79). [Pg.199]

Mossbauer spectroscopy of AvF clearly demonstrated the presence of P clusters (174). The EPR spectra of dithionite-reduced VFe proteins are complex, indicating the presence of several paramagnetic species. Avl exhibits broad EPR signals, with g values of 5.8 and 5.4 integrating to 0.9 spins per V atom, which have been assigned to transitions from the ground and first excited state of a spin S = system (175). EPR data for AcF are more complex, with g values at 5.6, 4.3, and 3.77 that appear to arise from a mixture of S = species (176). The signals were associated with a midpoint potential of... [Pg.205]

Fig. 1 illustrates the identification result, i.e., validation of identified model. The 4-level pseudo random signal is introduced to obtain the excited output signal which contains the sufficient information on process dynamics. With these exciting and excited data, L and Lu as well as state space model are oalcidated and on the basis of these matrices the modified output prediction model is constructed according to Eq. (8). To both mathematical model assum as plimt and identified model another 4-level pseudo random signal is introduced and then the corresponding outputs fiom both are compared as shown in Fig. 1. Based on the identified model, we design the controller and investigate its performance under the demand on changes in the set-points for the conversion and M . The sampling time, prediction and... Fig. 1 illustrates the identification result, i.e., validation of identified model. The 4-level pseudo random signal is introduced to obtain the excited output signal which contains the sufficient information on process dynamics. With these exciting and excited data, L and Lu as well as state space model are oalcidated and on the basis of these matrices the modified output prediction model is constructed according to Eq. (8). To both mathematical model assum as plimt and identified model another 4-level pseudo random signal is introduced and then the corresponding outputs fiom both are compared as shown in Fig. 1. Based on the identified model, we design the controller and investigate its performance under the demand on changes in the set-points for the conversion and M . The sampling time, prediction and...
Figure 1. Schematic of the radial cuts of the ground- and excited-state potential energy surfaces at the linear and T-shaped orientations. Transitions of the ground-state, T-shaped complexes access the lowest lying, bound intermolecular level in the excited-state potential also with a rigid T-shaped geometry. Transitions of the linear conformer were previously believed to access the purely repulsive region of the excited-state potential and would thus give rise to a continuum signal. The results reviewed here indicate that transitions of the linear conformer can access bound excited-state levels with intermolecular vibrational excitation. Figure 1. Schematic of the radial cuts of the ground- and excited-state potential energy surfaces at the linear and T-shaped orientations. Transitions of the ground-state, T-shaped complexes access the lowest lying, bound intermolecular level in the excited-state potential also with a rigid T-shaped geometry. Transitions of the linear conformer were previously believed to access the purely repulsive region of the excited-state potential and would thus give rise to a continuum signal. The results reviewed here indicate that transitions of the linear conformer can access bound excited-state levels with intermolecular vibrational excitation.

See other pages where Excited-state signal is mentioned: [Pg.389]    [Pg.154]    [Pg.488]    [Pg.31]    [Pg.389]    [Pg.181]    [Pg.389]    [Pg.154]    [Pg.488]    [Pg.31]    [Pg.389]    [Pg.181]    [Pg.368]    [Pg.799]    [Pg.1419]    [Pg.1977]    [Pg.1982]    [Pg.1982]    [Pg.2447]    [Pg.2478]    [Pg.446]    [Pg.259]    [Pg.319]    [Pg.319]    [Pg.387]    [Pg.282]    [Pg.64]    [Pg.133]    [Pg.375]    [Pg.448]    [Pg.486]    [Pg.585]    [Pg.55]    [Pg.435]    [Pg.187]    [Pg.380]    [Pg.412]    [Pg.413]    [Pg.415]    [Pg.250]    [Pg.274]    [Pg.95]    [Pg.137]    [Pg.151]    [Pg.213]    [Pg.213]    [Pg.654]    [Pg.197]    [Pg.266]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



Excitation signal

© 2024 chempedia.info