Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exchange-correlation kernel, second

The second approach is used by Baerends and co-workers. They use linear response theory, but instead of calculating the full linear response function they use the response function of the noninteracting Kohn-Sham system together with an effective potential. This response function can be calculated from the Kohn-Sham orbitals and energies and the occupation numbers. They use the adiabatic local density approximation (ALDA), and so their exchange correlation kernel, /xc (which is the functional derivative of the exchange correlation potential, Vxc, with respect to the time-dependent density) is local in space and in time. They report frequency dependent polarizabilities for rare gas atoms, and static polarizabilities for molecules. [Pg.810]

The many-body ground and excited states of a many-electron system are unknown hence, the exact linear and quadratic density-response functions are difficult to calculate. In the framework of time-dependent density functional theory (TDDFT) [46], the exact density-response functions are obtained from the knowledge of their noninteracting counterparts and the exchange-correlation (xc) kernel /xcCf, which equals the second functional derivative of the unknown xc energy functional ExcL i]- In the so-called time-dependent Hartree approximation or RPA, the xc kernel is simply taken to be zero. [Pg.251]

It has recently been shown [ 12] that time-dependent or linear-response theory based on local exchange and correlation potentials is inconsistent in the pure exchange limit with the time-dependent Hartree-Fock theory (TDHF) of Dirac [13] and with the random-phase approximation (RPA) [14] including exchange. The DFT-based exchange-response kernel [15] is inconsistent with the structure of the second-quantized Hamiltonian. [Pg.8]


See other pages where Exchange-correlation kernel, second is mentioned: [Pg.42]    [Pg.159]    [Pg.74]    [Pg.205]    [Pg.205]    [Pg.68]    [Pg.68]    [Pg.274]    [Pg.203]    [Pg.274]    [Pg.284]    [Pg.24]    [Pg.197]    [Pg.22]   


SEARCH



Exchange correlation

Exchange-correlation kernel

© 2024 chempedia.info