Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Error threshold selective advantage

The selection to minimize absolute error [Eq. (6)] calls for optimization algorithms different from those of the standard least-squares problem. Both problems have simple and extensively documented solutions. A slight advantage of the LP solution is that it does not need to be solved for the points for which the approximation error is less than the selected error threshold. In contrast, the least squares problem has to be solved with every newly acquired piece of data. The LP problem can effectively be solved with the dual simplex algorithm, which allows the solution to proceed recursively with the gradual introduction of constraints corresponding to the new data points. [Pg.189]

Figure 11. The error threshold of replication and mutation in genotype space. Asexually reproducing populations with sufficiently accurate replication and mutation, approach stationary mutant distributions which cover some region in sequence space. The condition of stationarity leads to a (genotypic) error threshold. In order to sustain a stable population the error rate has to be below an upper limit above which the population starts to drift randomly through sequence space. In case of selective neutrality, i.e. the case of equal replication rate constants, the superiority becomes unity, Om = 1, and then stationarity is bound to zero error rate, pmax = 0. Polynucleotide replication in nature is confined also by a lower physical limit which is the maximum accuracy which can be achieved with the given molecular machinery. As shown in the illustration, the fraction of mutants increases with increasing error rate. More mutants and hence more diversity in the population imply more variability in optimization. The choice of an optimal mutation rate depends on the environment. In constant environments populations with lower mutation rates do better, and hence they will approach the lower limit. In highly variable environments those populations which approach the error threshold as closely as possible have an advantage. This is observed for example with viruses, which have to cope with an immune system or other defence mechanisms of the host. Figure 11. The error threshold of replication and mutation in genotype space. Asexually reproducing populations with sufficiently accurate replication and mutation, approach stationary mutant distributions which cover some region in sequence space. The condition of stationarity leads to a (genotypic) error threshold. In order to sustain a stable population the error rate has to be below an upper limit above which the population starts to drift randomly through sequence space. In case of selective neutrality, i.e. the case of equal replication rate constants, the superiority becomes unity, Om = 1, and then stationarity is bound to zero error rate, pmax = 0. Polynucleotide replication in nature is confined also by a lower physical limit which is the maximum accuracy which can be achieved with the given molecular machinery. As shown in the illustration, the fraction of mutants increases with increasing error rate. More mutants and hence more diversity in the population imply more variability in optimization. The choice of an optimal mutation rate depends on the environment. In constant environments populations with lower mutation rates do better, and hence they will approach the lower limit. In highly variable environments those populations which approach the error threshold as closely as possible have an advantage. This is observed for example with viruses, which have to cope with an immune system or other defence mechanisms of the host.
Equation (III.2) may be rewritten to isolate the dependence on the copying fidelity q in order to demonstrate that for a given set of replication parameters there is an error-rate-dependent threshold sequence length for quasi-species instability. To this end the selective advantage or superiority parameter a was introduced ... [Pg.177]


See other pages where Error threshold selective advantage is mentioned: [Pg.131]    [Pg.149]    [Pg.175]    [Pg.285]    [Pg.251]    [Pg.213]   
See also in sourсe #XX -- [ Pg.175 , Pg.176 , Pg.177 , Pg.178 ]




SEARCH



Error threshold

Selectivity Advantages

© 2024 chempedia.info