Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equipartition and optimization in separation systems

We can extend this approach for a network of heat exchangers. [Pg.289]

Thermodynamic cost analysis relates the thermodynamic limits of separation systems to finite rate processes, and considers the environmental impact through the depletion of natural resources within the exergy loss concept. Still, economic analysis and thermodynamic analysis approaches may not be parallel. For example, it is estimated that a diabatic column has a lower exergy loss (39%) than that of adiabatic distillation however, this may not lead to a gain in the economic sense, yet it is certainly a gain in the thermodynamic sense. The minimization of entropy production is not always an economic criterion sometimes, existing separation equipment may be modified for an even distribution of forces or an even distribution of entropy production. Thermodynamic analysis requires careful interpretation and application. [Pg.289]


See other pages where Equipartition and optimization in separation systems is mentioned: [Pg.289]    [Pg.289]    [Pg.291]    [Pg.293]    [Pg.295]    [Pg.297]    [Pg.299]    [Pg.301]    [Pg.303]    [Pg.305]    [Pg.280]    [Pg.281]    [Pg.283]    [Pg.285]    [Pg.287]    [Pg.289]    [Pg.291]    [Pg.293]    [Pg.295]    [Pg.297]    [Pg.289]    [Pg.289]    [Pg.291]    [Pg.293]    [Pg.295]    [Pg.297]    [Pg.299]    [Pg.301]    [Pg.303]    [Pg.305]   


SEARCH



Equipartition

Equipartitioning

Separable systems

Separator optimized

System optimization

© 2024 chempedia.info