Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium constant for precursor

Reaction of Cytochrome cimu with Tris(oxalato)cobalt(III) The cytochrome c protein was also used as reductant in a study of the redox reaction with tris (oxalato)cobalt(III).284 Selection of the anionic cobalt(III) species, [Conl(ox)3]3 was prompted, in part, because it was surmised that it would form a sufficiently stable precursor complex with the positively charged cyt c so that the equilibrium constant for precursor complex formation (K) would be of a magnitude that would permit it to be separated in the kinetic analysis of an intermolecular electron transfer process from the actual electron transfer kinetic step (kET).2S5 The reaction scheme for oxidation of cyt c11 may be outlined ... [Pg.314]

This expression relates the second-order rate constant, k, for an outer-sphere electron transfer reaction to the free energy of reaction, AG°, with one adjustable parameter, X, known as the reorganization energy. Wis the electrostatic work term for the coulombic interaction of the two reactants, which can be calculated from the collision distance, the dielectric constant, and a factor describing the influence of ionic strength. If one of the reactants is uncharged, Wis zero. In exact calculations, AG should be corrected for electrostatic work. The other terms in equation 46 can be treated as constants (Eberson, 1987) the diffusion-limited reaction rate constant, k, can be taken to be 10 M" is the equilibrium constant for precursor complex formation and Z is the universal collision frequency factor (see Eberson, 1987). [Pg.709]


See other pages where Equilibrium constant for precursor is mentioned: [Pg.5405]    [Pg.5404]   


SEARCH



Equilibrium constants for

Precursor equilibrium constant

© 2024 chempedia.info