Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol From epoxide

From a stereochemical point of view, compound 35 is rather complex, for it possesses four contiguous oxygen-bearing stereocenters. Nonetheless, compound 35 is amenable to a very productive retro-synthetic maneuver. Indeed, removal of the epoxide oxygen from 35 furnishes trans allylic alcohol 36 as a potential precursor. In the synthetic direction, SAE of 36 with the (+)-dialkyl tartrate ligand would be expected to afford epoxy alcohol 35, thus introducing two of the four contiguous stereocenters in one step. [Pg.308]

Synthesis of Allylic Alcohol Xa. A 3.84 g sample of olefin VII was treated with m-chloroperoxybenzoic acid (MCPBA) in dichloromethane for 1.5 hours at 0°C and 2.5 hours at 20°C. The NMR spectrum of the crude product indicated a mixture of approximately 75% epoxide VIII and 25% IX (structural assignments based upon assumed epoxidation preferentially from the less hindered side). Purification by column chromatography furnished 0.61 g of IX and 2.58 g of VIII. The separation was performed for characterization purposes the crude epoxidation mixture was suitable for subsequent transformations. [Pg.431]

The development of transition metal mediated asymmetric epoxidation started from the dioxomolybdcnum-/V-cthylcphcdrinc complex,4 progressed to a peroxomolybdenum complex,5 then vanadium complexes substituted with various hydroxamic acid ligands,6 and the most successful procedure may now prove to be the tetroisopropoxyltitanium-tartrate-mediated asymmetric epoxidation of allylic alcohols. [Pg.196]

Via Asymmetric Epoxidation and Related Reactions. Denis et al.35 synthesized the taxol side chain derivative via Sharpless epoxidation. Starting from cw-cinnamyl alcohol, the corresponding epoxide compound was prepared with 76-80% ee. Subsequent azide ring opening gives a product that possesses the side chain skeleton (Scheme 7-78). [Pg.442]

The formation of the primary carbocation can be achieved by treatment of an alkene or an epoxide with a Bronsted or a Lewis add, by elimination of water from an alcohol or an alcohol from an acetal and by readion of enones and imines with Lewis acids. The two latter reactions may also be classified under anionic domino reactions depending on the following steps. [Pg.42]

More than a decade of experience on Sharpless asymmetric epoxidation has confirmed that the method allows a great structural diversity in allylic alcohols and no exceptions to the face-selectivity rules shown in Fig. 10.1 have been reported to date. The scheme can be used with absolute confidence to predict and assign absolute configurations to the epoxides obtained from prochiral allylic alcohols. However, when allylic alcohols have chiral substituents at C(l), C(2) and/or C(3), the assignment of stereochemistry to the newly introduced epoxide group must be done with considerably more care. [Pg.280]

The synthesis of the Y zeolite-encapsulated manganese complex of the salen ligand has been reported recently [51]. It was found to have catalytic activity in the oxidation of cyclohexene, styrene, and stilbene with PhlO. Typically, 1 Mn(salen) is present per 15 supercages, resulting in catalytic turn-overs in the order of 60. The reactions investigated with the respective product yields are given in Scheme 5. Typical oxidation products are epoxides, alcohols and aldehydes. In comparison to the homogeneous case encapsulation seems to lower the reaction rate. From cyclohexene the expected oxidation product cyclohexene oxide is present in excess and is formed on the Mn(salen) site. 2-cyclohexene-l-ol is probably formed on residual Mn cations via a radical mechanism. [Pg.243]

In 1980, Katsuki and Sharpless described the first really efficient asymmetric epoxidation of allylic alcohols with very high enantioselectivities (ee 90-95%), employing a combination of Ti(OPr-/)4-diethyl tartrate (DET) as chiral catalyst and TBHP as oxidant Stoichiometric conditions were originally described for this system, however the addition of molecular sieves (which trap water traces) to the reaction allows the epoxidation to proceed under catalytic conditions. The stereochemical course of the reaction may be predicted by the empirical rule shown in equations 40 and 41. With (—)-DET, the oxidant approaches the allylic alcohol from the top side of the plane, whereas the bottom side is open for the (-l-)-DET based reagent, giving rise to the opposite optically active epoxide. Various aspects of this reaction including the mechanism, theoretical investigations and synthetic applications of the epoxy alcohol products have been reviewed and details may be found in the specific literature . [Pg.1092]

Most attention has been devoted to the conversion of epoxides derived from 2-alkoxy-5,6-dihydro-2ff-pvrans into unsaturated allylic alcohols, that is, alkyl 3,4-dideoxy-DL-ald-3-enopvranosides (256). Ad-... [Pg.49]

Altylic alcohols from epoxides. Reaction of T with epoxides and then DBN gives reasonable yields of allylic alcohols as the t-butyldimethylsilyl ether. [Pg.63]

Basic treatment (NaH, THF) of the iodo alcohol from isosorbide gives the corresponding epoxide. This epoxide presents two advantages first, it is more stable than the iodo alcohol on storage, and secondly, it offers a great potential for transformations. [Pg.95]


See other pages where Alcohol From epoxide is mentioned: [Pg.632]    [Pg.347]    [Pg.103]    [Pg.81]    [Pg.632]    [Pg.31]    [Pg.54]    [Pg.1202]    [Pg.11]    [Pg.495]    [Pg.531]    [Pg.128]    [Pg.161]    [Pg.233]    [Pg.215]    [Pg.1080]    [Pg.1]    [Pg.878]    [Pg.366]    [Pg.71]    [Pg.254]    [Pg.428]    [Pg.81]    [Pg.428]    [Pg.1092]    [Pg.145]    [Pg.113]    [Pg.168]    [Pg.347]    [Pg.81]    [Pg.278]   
See also in sourсe #XX -- [ Pg.509 ]




SEARCH



Alcohols epoxidation

Alcohols from epoxides

Epoxide alcohol

From epoxides

© 2024 chempedia.info