Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enones arylation

Use of proline-catalyzed five-component cascade olefmation/Diels-Alder/ epimerization/olefination/hydrogenation reactions of enones, aryl aldehydes, alkyl cyanoacetates, and Hantzsch ester to furnish highly substituted 66 in a highly diaste-reoselective fashion (99% de) with excellent yields (70 to 75%) was also reported (Scheme 1.20) [23]. [Pg.12]

Regiocontrolled q- or / -alkenylation and arylation of cyclic enones are possible without protection of the ketone by applying the coupling reaction of the Q- or /3-halo enones 607 and 608 with aryl and alkenylzinc reagents[468,469]. [Pg.214]

The enone 807 is converted into the dienol triflatc 808 and then the conjugated diene 809 by the hydrogenolysis with tributylammonium for-mate[689,690]. Naphthol can be converted into naphthalene by the hydrogenolysis of its triflate 810[691-693] or sulfonates using dppp or dppf as a ligand[694]. Aryl tetrazoyl ether 811 is cleaved with formic acid using Pd on carbon as a catalyst[695]. [Pg.248]

The alkylphenylacetyi chloride 843 and benzoyl chloride undergo decarbo-nylative cross-condensation to give the enone 845 in the presence of EtiNf723]. The reaction is e.xplained by the insertion of the ketene 844 into the Pd-aryl bond and, 3-elimination. To support this mechanism, o, d-unsaturuted ketones are obtained by the reaction of ketenes with aroyl chlorides[724]. [Pg.253]

This reaction is not a bona fide Heck reaction per se for two reasons (a) the starting material underwent a Hg Pd transmetallation first rather than the oxidative addition of an aryl halide or triflate to palladium(O) (b) instead of undergoing a elimination step to give an enone, transformation 134 136... [Pg.23]

Organoboron reagents ate pariictdarly well suited for 1,4-additions of aryl and vinyl groups to enones. Hayasbi et al. developed a highly enantioselective RliQ)/ BlNAP-catalyzed 1,4-addilion of pbenylbotonic add lo cyclic and acyclic enones [24] fSclieme 7.5) and 1-alkenylpbospbonales [25]. [Pg.227]

Combination of nickel bromide (or nickel acetylacetonate) and A. A -dibutylnorephcdrinc catalyzed the enantioselective conjugate addition of dialkylzincs to a./Tunsaturated ketones to afford optically active //-substituted ketones in up to ca. 50% ee53. Use of the nickel(II) bipyridyl-chiral ligand complex in acetonitrile/toluenc as an in situ prepared catalyst system afforded the //-substituted ketones 2, from aryl-substituted enones 1, in up to 90% ee54. [Pg.910]

Mit Trifluoressigsaure protonierte Enaminone werden mit Natriumboranat in Isopropanol zu den entsprechenden a, /3-ungesattigten Ketonen reduziert9 und/3-Dialkylami-no-enone ergeben mit Natriumboranat/Eisen(III)-chlorid gesattigte Amino-alkohole10. Zur Reduktion von Aryl-, Methoxy- usw. Enamino-ketonen s.Lit.11. [Pg.303]

Chiral diamino carbene complexes of rhodium have been merely used in asymmetric hydrosilylations of prochiral ketones but also in asymmetric addition of aryl boron reagents to enones. [Pg.210]

The optimal reaction conditions were applied with 59d in the addition of various aryl boronic acids and potassium trifluoroborates to several cyclic and acyclic enones (Fig. 8). Arylboronic acids added to cyclic enones in high yields (89-97%) and with good to excellent selectivities (85-98% ee). Under these conditions, the potassium trifluoroborate reagents reacted at faster rates, but with slightly lower selectivities (83-96% ee). The reactions of acyclic enones with aryl boron reagents gave also excellent yields (83-96%). [Pg.214]

Example Sometimes copper solves other regioselecL-ivity problems. Addition of aryl Grignard (28) to enone (29) gives the anomalous product (30) in which the electrophile (29) has been attacked at the right atom but the nucleophile (23, arrows) has attacked with the wrong atom. [Pg.146]

Asymmetric conjugate addition of dialkyl or diaryl zincs for the formation of all carbon quaternary chiral centres was demonstrated by the combination of the chiral 123 and Cu(OTf)2-C H (2.5 mol% each component). Yields of 94-98% and ee of up to 93% were observed in some cases. Interestingly, the reactions with dialkyl zincs proceed in the opposite enantioselective sense to the ones with diaryl zincs, which has been rationalised by coordination of the opposite enantiofaces of the prochiral enone in the alkyl- and aryl-cuprate intermediates, which precedes the C-C bond formation, and determines the configuration of the product. The copper enolate intermediates can also be trapped by TMS triflate or triflic anhydride giving directly the versatile chiral enolsilanes or enoltriflates that can be used in further transformations (Scheme 2.30) [110],... [Pg.55]

The general mechanistic features of the aldol addition and condensation reactions of aldehydes and ketones were discussed in Section 7.7 of Part A, where these general mechanisms can be reviewed. That mechanistic discussion pertains to reactions occurring in hydroxylic solvents and under thermodynamic control. These conditions are useful for the preparation of aldehyde dimers (aldols) and certain a,(3-unsaturated aldehydes and ketones. For example, the mixed condensation of aromatic aldehydes with aliphatic aldehydes and ketones is often done under these conditions. The conjugation in the (3-aryl enones provides a driving force for the elimination step. [Pg.64]

A typical second step after the insertion of CO into aryl or alkenyl-Pd(II) compounds is the addition to alkenes [148]. However, allenes can also be used (as shown in the following examples) where a it-allyl-r 3-Pd-complex is formed as an intermediate which undergoes a nucleophilic substitution. Thus, Alper and coworkers [148], as well as Grigg and coworkers [149], described a Pd-catalyzed transformation of o-iodophenols and o-iodoanilines with allenes in the presence of CO. Reaction of 6/1-310 or 6/1-311 with 6/1-312 in the presence of Pd° under a CO atmosphere (1 atm) led to the chromanones 6/1-314 and quinolones 6/1-315, respectively, via the Jt-allyl-r 3-Pd-complex 6/1-313 (Scheme 6/1.82). The enones obtained can be transformed by a Michael addition with amines, followed by reduction to give y-amino alcohols. Quinolones and chromanones are of interest due to their pronounced biological activity as antibacterials [150], antifungals [151] and neurotrophic factors [152]. [Pg.411]

The Nazarov cyclization of vinyl aryl ketones involves a disruption of the aromaticity, and therefore, the activation barrier is significantly higher than that of the divinyl ketones. Not surprisingly, the Lewis acid-catalyzed protocols [30] resulted only in decomposition to the enone derived from 46,47, and CO. Pleasingly, however, photolysis [31] readily delivered the desired annulation product 48 in 60 % yield. The photo-Nazarov cyclization reaction of aryl vinyl ketones was first reported by Smith and Agosta. Subsequent mechanistic studies by Leitich and Schaffner revealed the reaction mechanism to be a thermal electrocyclization induced by photolytic enone isomerization. The mildness of these reaction conditions and the selective activation of the enone functional group were key to the success of this reaction. [Pg.31]

Nicolaou and coworkers reported efficient enantioselective syntheses of ( )-kinamycin C (3), ( )-kinamycin F (6), and ( )-kinamycin J (10) [39], Nicolaou s retrosyntheses of these targets are shown in Scheme 3.13. The authors envisioned that all three metabolites could be accessed from the common precursor 82. The a-hydroxyketone function of 82 was envisioned to arise from an intramolecular benzoin reaction of the ketoaldehyde 83. This key bond disconnection would serve to forge the cyclopentyl ring of the kinamycin skeleton. The ketoaldehyde 83 was deconstructed by an Ullmann coupling of the aryl bromide 84 and the a-iodoenone 85. The latter were anticipated to arise from the bromojuglone derivative 86 and the enantiomerically enriched enone 87, respectively. [Pg.54]

Condensation of aromatic acyl compounds with N,N-dimethylformamide diethyl acetal in a pressure tube under the action of microwave irradiation affords easy access to l-aryl-3-dimethylaminoprop-2-enones in almost quantitative yield after 6 min. These intermediates can then be reacted with hydrazine hydrate under conventional reflux in ethanol to form the corresponding 3-substituted pyrazoles [95] (Scheme 8.69). [Pg.284]

Certain catalysts promote the reduction of ketones with organosilanes. The reduction of acetophenone with Et3SiH is catalyzed by the diphosphine 65 and gives only a small amount of overreduction to ethylbenzene.377 Aryl alkyl enones and ynones are reduced to the corresponding alcohols with triethoxysilane and the titanium-based catalyst 66.378 Trichlorosilane reduces acetophenone in 90% yield with /V-formylpyrrolidinc catalysis.379... [Pg.74]


See other pages where Enones arylation is mentioned: [Pg.196]    [Pg.63]    [Pg.63]    [Pg.65]    [Pg.65]    [Pg.1249]    [Pg.63]    [Pg.63]    [Pg.1365]    [Pg.1365]    [Pg.119]    [Pg.196]    [Pg.63]    [Pg.63]    [Pg.65]    [Pg.65]    [Pg.1249]    [Pg.63]    [Pg.63]    [Pg.1365]    [Pg.1365]    [Pg.119]    [Pg.57]    [Pg.440]    [Pg.314]    [Pg.194]    [Pg.255]    [Pg.649]    [Pg.982]    [Pg.625]    [Pg.214]    [Pg.186]    [Pg.55]    [Pg.625]    [Pg.101]    [Pg.198]    [Pg.326]    [Pg.93]    [Pg.140]    [Pg.4]    [Pg.32]    [Pg.158]    [Pg.114]    [Pg.983]   
See also in sourсe #XX -- [ Pg.295 ]




SEARCH



Arylation of enones

© 2024 chempedia.info