Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enhanced electroluminescence

G Yu, N Nishino, AJ Heeger, T-A Chen, and RD Rieke, Enhanced electroluminescence from semiconducting polymer blends, Synth. Met., 72 249-252, 1995. [Pg.39]

V. Cimrova and D. Vyprachticky, Enhanced electroluminescence from light-emitting devices based on poly(9,9-dihexadecylfluorene- 2,7-diyl) and polysilane blends, Appl. Phys. Lett., 82 642-644, 2003. [Pg.275]

Dobrowolski, J.A. Sullivan, B.T. Bajcar, R.C. (1992). Optical interference, contrast-enhanced electroluminescent device. Applied Optics, Vol. 31, No. 28, pp. 5988—5996, ISSN 0003-6935. [Pg.140]

A. R. Brown, J. H. Burroughes, N. Greenham. R. H. Friend, D. D. C. Bradley. P. L. Burn. A. Kraft, and A. B. Holmes, Poly(p-phenylene vinylene) light-emitting diodes enhanced electroluminescence efficiency through charge carrier confinement, Appl. Phys. Lett. 6/ 2793 (1992). [Pg.842]

Holmes, A B., and Kraft, A, Polyfp-phenylenevinylene) light-emitting diodes enhanced electroluminescent efficiency through diaige carrier confinement, Phys. Lett., 61,2793,1992. [Pg.379]

A large number of possible applications of arrays of nanoparticles on solid surfaces is reviewed in Refs. [23,24]. They include, for example, development of new (elect-ro)catalytical systems for applications as chemical sensors, biosensors or (bio)fuel cells, preparation of optical biosensors exploiting localized plasmonic effect or surface enhanced Raman scattering, development of single electron devices and electroluminescent structures and many other applications. [Pg.325]

J.H. Park, Y.T. Lim, O.O. Park, J.K. Kim, J.-W. Yu, and Y.C. Kim, Polymer/gold nanoparticle nanocomposite light-emitting diodes enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers, Chem. Mater., 16 688-692, 2004. [Pg.275]

X. Zhang and S.A. Jenekhe, Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunction, Macromolecules, 33 2069-2082, 2000. [Pg.291]

L.S. Hung, C.W. Tang, and M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode, Appl. Phys. Lett., 70 152-154 (1997). [Pg.397]

C.H. Lee, Enhanced efficiency and durability of organic electroluminescent devices by inserting a thin insulating layer at the Alq3/cathode interface, Synth. Met., 91 125-127 (1997). [Pg.397]

G. Chimed and F. Masamichi, A lithium carboxylate ultrathin film on an aluminum cathode for enhanced electron injection in organic electroluminescent devices, Jpn. J. Appl. Phys., Part 2, 38 L1348-L1350 (1999). [Pg.397]

F. He, H. Xu, B. Yang, Y. Duan, L. Tian, K. Huang, Y. Ma, S. Liu, S. Feng, and J. Shen, Oligomeric phenylenevinylene with cross dipole arrangement and amorphous morphology enhanced solid-state luminescence efficiency and electroluminescence performance, Adv. Mater., 17 2710-2714 (2005). [Pg.406]

Y. Ohmori, H. Kajii, T. Sawatani, H. Ueta, and K. Yoshino, Enhancement of electroluminescence utilizing confined energy transfer for red light emission, Thin Solid Films, 393 407-411 (2001). [Pg.410]

S.F.J. Appleyard and M.R. Willis, Electroluminescence enhanced injection using ITO electrodes coated with a self assembled monolayer, Opt. Mater., 9 120-124, 1998. [Pg.524]

F.R. Zhu, B.L. Low, K.R. Zhang, and S.J. Chua, Lithium-fluoride-modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices, Appl. Phys. Lett., 79 1205-1207, 2001. [Pg.524]

J.X. Tang, Y.Q. Li, L.S. Hung, and C.S. Lee, Photoemission study of hole-injection enhancement in organic electroluminescent devices with Au/CF anode, Appl. Phys. Lett., 84 73-75, 2004. [Pg.525]

J. Heikenfeld and A.J. Steckl, Contrast enhancement in black dielectric electroluminescent devices, IEEE Trans. Electron. Devices, 49 1348-1352, 2002. [Pg.525]

Lee T-H, Gonzalez JI, Dickson RM (2002) Strongly enhanced field-dependent single-molecule electroluminescence. Proc Natl Acad Sci USA 99 10272-10275... [Pg.329]


See other pages where Enhanced electroluminescence is mentioned: [Pg.284]    [Pg.227]    [Pg.44]    [Pg.475]    [Pg.481]    [Pg.749]    [Pg.978]    [Pg.980]    [Pg.138]    [Pg.229]    [Pg.430]    [Pg.174]    [Pg.242]    [Pg.284]    [Pg.227]    [Pg.44]    [Pg.475]    [Pg.481]    [Pg.749]    [Pg.978]    [Pg.980]    [Pg.138]    [Pg.229]    [Pg.430]    [Pg.174]    [Pg.242]    [Pg.216]    [Pg.315]    [Pg.629]    [Pg.139]    [Pg.692]    [Pg.229]    [Pg.393]    [Pg.21]    [Pg.397]    [Pg.397]    [Pg.503]    [Pg.524]    [Pg.542]    [Pg.558]    [Pg.694]    [Pg.191]   


SEARCH



Electroluminescence

Electroluminescent

Enhanced electroluminescence energy transfer

© 2024 chempedia.info