Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy metabolism amino acids

Periportal zone/Zone 1 Glucose release Oxidative energy metabolism Amino acid utilization Protection against oxidants Bile acid uptake and excretion Bilirubin excretion... [Pg.1549]

The carbon skeletons of the amino acids can be used to produce metabolic energy. Several amino acids can be classified as glucogenic and ketogenic because of their degradation products. [Pg.182]

Proteias are metabolized coatiauously by all living organisms, and are ia dyaamic equilibrium ia living cells (6,12). The role of amino acids ia proteia biosyathesis has beea described (2). Most of the amino acids absorbed through the digestioa of proteias are used to replace body proteias. The remaining portioa is metabolized iato various bioactive substances such as hormones and purine and pyrimidine nucleotides, (the precursors of DNA and RNA) or is consumed as an energy source (6,13). [Pg.271]

Physiological Role of Citric Acid. Citric acid occurs ia the terminal oxidative metabolic system of virtually all organisms. This oxidative metabohc system (Fig. 2), variously called the Krebs cycle (for its discoverer, H. A. Krebs), the tricarboxyUc acid cycle, or the citric acid cycle, is a metaboHc cycle involving the conversion of carbohydrates, fats, or proteins to carbon dioxide and water. This cycle releases energy necessary for an organism s growth, movement, luminescence, chemosynthesis, and reproduction. The cycle also provides the carbon-containing materials from which cells synthesize amino acids and fats. Many yeasts, molds, and bacteria conduct the citric acid cycle, and can be selected for thek abiUty to maximize citric acid production in the process. This is the basis for the efficient commercial fermentation processes used today to produce citric acid. [Pg.182]

Mitochondria Mitochondria are organelles surrounded by two membranes that differ markedly in their protein and lipid composition. The inner membrane and its interior volume, the matrix, contain many important enzymes of energy metabolism. Mitochondria are about the size of bacteria, 1 fim. Cells contain hundreds of mitochondria, which collectively occupy about one-fifth of the cell volume. Mitochondria are the power plants of eukaryotic cells where carbohydrates, fats, and amino acids are oxidized to CO9 and H9O. The energy released is trapped as high-energy phosphate bonds in ATR... [Pg.27]

As we have seen, the metabolic energy from oxidation of food materials—sugars, fats, and amino acids—is funneled into formation of reduced coenzymes (NADH) and reduced flavoproteins ([FADHg]). The electron transport chain reoxidizes the coenzymes, and channels the free energy obtained from these reactions into the synthesis of ATP. This reoxidation process involves the removal of both protons and electrons from the coenzymes. Electrons move from NADH and [FADHg] to molecular oxygen, Og, which is the terminal acceptor of electrons in the chain. The reoxidation of NADH,... [Pg.679]

Figure 11.1. A flow-model scheme for treating the protein routing question. Labels refer to flow rates of carbon. The total carbon flux, into and out of the body, is 1, divided into F (for protein) and 1 - F for the remainder. The significant relevant internal fluxes are between the amino acid pool (coupled to the body protein pool), and the energy metabolism pool . The extent to which protein routing is observable in the body protein composition depends on the value ofX (See Fig. 11.2). Numbers in refer to suggested isotopic fractionations associated with a metabolic path, which are consistent with the data of the Ambrose and Norr (1993) and Tieszen and Fagre (1993) data set (see Section 4.1). Figure 11.1. A flow-model scheme for treating the protein routing question. Labels refer to flow rates of carbon. The total carbon flux, into and out of the body, is 1, divided into F (for protein) and 1 - F for the remainder. The significant relevant internal fluxes are between the amino acid pool (coupled to the body protein pool), and the energy metabolism pool . The extent to which protein routing is observable in the body protein composition depends on the value ofX (See Fig. 11.2). Numbers in refer to suggested isotopic fractionations associated with a metabolic path, which are consistent with the data of the Ambrose and Norr (1993) and Tieszen and Fagre (1993) data set (see Section 4.1).
Skeletal muscle is the principal site of metabolism of branched-chain amino acids, which are used as an energy source. [Pg.576]

This potential, or protonmotive force as it is also called, in turn drives a number of energy-requiring functions which include the synthesis of ATP, the coupling of oxidative processes to phosphorylation, a metabohc sequence called oxidative phosphorylation and the transport and concentration in the cell of metabolites such as sugars and amino acids. This, in a few simple words, is the basis of the chemiosmotic theory linking metabolism to energy-requiring processes. [Pg.257]

Diffusion-mediated release of root exudates is likely to be affected by root zone temperature due to temperature-dependent changes in the speed of diffusion processes and modifications of membrane permeability (259,260). This might explain the stimulation of root exudation in tomato and clover at high temperatures, reported by Rovira (261), and also the increase in exudation of. sugars and amino acids in maize, cucumber, and strawberry exposed to low-temperature treatments (5-10°C), which was mainly attributed to a disturbance in membrane permeability (259,262). A decrease of exudation rates at low temperatures may be predicted for exudation processes that depend on metabolic energy. This assumption is supported by the continuous decrease of phytosiderophore release in Fe-deficient barley by decreasing the temperature from 30 to 5°C (67). [Pg.74]

Both the overall rate of protein synthesis and the translation of certain specific mRNAs are controlled by agents such as hormones, growth factors, and other extracellular stimuli. As precursors for protein assembly, amino acids also regulate the translational machinery. Because protein synthesis consumes a high proportion of cellular metabolic energy, the energy status of the cell also modulates translation factors. [Pg.148]


See other pages where Energy metabolism amino acids is mentioned: [Pg.172]    [Pg.656]    [Pg.992]    [Pg.203]    [Pg.656]    [Pg.68]    [Pg.116]    [Pg.6]    [Pg.591]    [Pg.101]    [Pg.283]    [Pg.10]    [Pg.301]    [Pg.566]    [Pg.584]    [Pg.177]    [Pg.623]    [Pg.422]    [Pg.183]    [Pg.195]    [Pg.227]    [Pg.228]    [Pg.230]    [Pg.236]    [Pg.234]    [Pg.234]    [Pg.222]    [Pg.290]    [Pg.176]    [Pg.280]    [Pg.645]    [Pg.184]    [Pg.138]    [Pg.169]    [Pg.265]    [Pg.207]    [Pg.140]    [Pg.202]    [Pg.441]    [Pg.147]   


SEARCH



Energy metabolic

Energy metabolism

© 2024 chempedia.info