Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy dimensional

The setup as seen in Figure 1 mainly consists of a Varian Linatron 3000A linear accelerator (LINAC) as radiation source, a rotational stage for sample manipulation, and a two-dimensional high-energy x-ray detector array consisting of four amorphous silicon area detectors Heimann RIS 256. The source to detector distance is 3.7 m. [Pg.492]

Therefore it is reasonable to prepare already the data acquisition for a three dimensional evaluation in cone-beam-technique by means of two-dimensional detectors. The system is already prepared to integrate a second detector- system for this purpose. An array of up to four flat panel detectors is foreseen. The detector- elements are based on amorphous silicon. Because of the high photon energy and the high dose rates special attention was necessary to protect the read-out electronics. Details of the detector arrangement and the software for reconstruction, visualisation and comparison between the CT results and CAD data are part of a separate paper during this conference [2]. [Pg.586]

Fig. Vn-2. Conformation for a hypothetical two-dimensional crystal, (a) (lO)-type planes only. For a crystal of 1 cm area, the total surface firee energy is 4 x lx 250 = 1000 eigs. (b) (ll)-type planes only. For a crystal of 1-cm area, the total surface free eneigy is 4 x 1 x 225 = 900 ergs, (c) For the shape given by the Wulff construction, the total surface free energy of a 1-cm crystal is (4 x 0.32 x 250) + (4 x 0.59 x 225) = 851 ergs, (d) Wulff construction considering only (10)- and (ll)-type planes. Fig. Vn-2. Conformation for a hypothetical two-dimensional crystal, (a) (lO)-type planes only. For a crystal of 1 cm area, the total surface firee energy is 4 x lx 250 = 1000 eigs. (b) (ll)-type planes only. For a crystal of 1-cm area, the total surface free eneigy is 4 x 1 x 225 = 900 ergs, (c) For the shape given by the Wulff construction, the total surface free energy of a 1-cm crystal is (4 x 0.32 x 250) + (4 x 0.59 x 225) = 851 ergs, (d) Wulff construction considering only (10)- and (ll)-type planes.
It is now necessary to examine the partition function in more detail. The energy states for translation are assumed to be given by the quantum-mechanical picture of a particle in a box. For a one-dimensional box of length a. [Pg.607]

Calculate the value of the first three energy levels according to the wave mechanical picture of a particle in a one-dimensional box. Take the case of nitrogen... [Pg.672]

The three-dimensional synnnetry that is present in the bulk of a crystalline solid is abruptly lost at the surface. In order to minimize the surface energy, the themiodynamically stable surface atomic structures of many materials differ considerably from the structure of the bulk. These materials are still crystalline at the surface, in that one can define a two-dimensional surface unit cell parallel to the surface, but the atomic positions in the unit cell differ from those of the bulk structure. Such a change in the local structure at the surface is called a reconstruction. [Pg.289]

For analysing equilibrium solvent effects on reaction rates it is connnon to use the thennodynamic fomuilation of TST and to relate observed solvent-mduced changes in the rate coefficient to variations in Gibbs free-energy differences between solvated reactant and transition states with respect to some reference state. Starting from the simple one-dimensional expression for the TST rate coefficient of a unimolecular reaction a— r... [Pg.833]

This ensures the correct connection between the one-dimensional Kramers model in the regime of large friction and multidimensional imimolecular rate theory in that of low friction, where Kramers model is known to be incorrect as it is restricted to the energy diflfiision limit. For low damping, equation (A3.6.29) reduces to the Lindemann-Flinshelwood expression, while in the case of very large damping, it attains the Smoluchowski limit... [Pg.849]

Multidimensionality may also manifest itself in the rate coefficient as a consequence of anisotropy of the friction coefficient [M]- Weak friction transverse to the minimum energy reaction path causes a significant reduction of the effective friction and leads to a much weaker dependence of the rate constant on solvent viscosity. These conclusions based on two-dimensional models also have been shown to hold for the general multidimensional case [M, 59, and 61]. [Pg.851]

Figure A3.7.7. Two-dimensional contour plot of the Stark-Wemer potential energy surface for the F + H2 reaction near the transition state. 0 is the F-H-H bend angle. Figure A3.7.7. Two-dimensional contour plot of the Stark-Wemer potential energy surface for the F + H2 reaction near the transition state. 0 is the F-H-H bend angle.
Straub J E and Berne B J 1986 Energy diffusion in many dimensional Markovian systems the consequences of the competition between inter- and intra-molecular vibrational energy transfer J. Chem. Phys. 85 2999 Straub J E, Borkovec M and Berne B J 1987 Numerical simulation of rate constants for a two degree of freedom system in the weak collision limit J. Chem. Phys. 86 4296... [Pg.897]


See other pages where Energy dimensional is mentioned: [Pg.422]    [Pg.103]    [Pg.12]    [Pg.422]    [Pg.103]    [Pg.12]    [Pg.242]    [Pg.209]    [Pg.4]    [Pg.81]    [Pg.81]    [Pg.261]    [Pg.285]    [Pg.609]    [Pg.657]    [Pg.24]    [Pg.72]    [Pg.93]    [Pg.156]    [Pg.172]    [Pg.202]    [Pg.246]    [Pg.264]    [Pg.271]    [Pg.307]    [Pg.308]    [Pg.309]    [Pg.368]    [Pg.382]    [Pg.437]    [Pg.653]    [Pg.661]    [Pg.754]    [Pg.851]    [Pg.870]    [Pg.870]    [Pg.871]    [Pg.907]    [Pg.913]    [Pg.929]    [Pg.934]    [Pg.1032]    [Pg.1032]   
See also in sourсe #XX -- [ Pg.5 , Pg.65 ]




SEARCH



Energy Considerations in the One-dimensional Case

High-dimensional neural network potential-energy surfaces

Multi-dimensional energy surfaces

One-dimensional energy bands

One-dimensional energy migration

One-dimensional potential energy

One-dimensional potential energy curves

Oscillators, 3-dimensional harmonic energy expression

Potential energy diagrams three-dimensional

Potential-energy surfaces dimensionality

Three-dimensional model phases energy values

Three-dimensional potential energy

Three-dimensional potential energy surface

Two-dimensional Model of PBMR - The Energy-balance Equation

Two-dimensional potential energy

© 2024 chempedia.info