Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy balance, batch reactor steady-state

Nonisothermal reactor design requires the simultaneous solution of the appropriate energy balance and the species material balances. For the batch, semi-batch, and steady-state plug-flow reactors, these balances are sets of initial-value ODEs that must be solved numerically, in very limited situations (constant thermodynamic properties, single... [Pg.182]

There are a variety of limiting forms of equation 8.0.3 that are appropriate for use with different types of reactors and different modes of operation. For stirred tanks the reactor contents are uniform in temperature and composition throughout, and it is possible to write the energy balance over the entire reactor. In the case of a batch reactor, only the first two terms need be retained. For continuous flow systems operating at steady state, the accumulation term disappears. For adiabatic operation in the absence of shaft work effects the energy transfer term is omitted. For the case of semibatch operation it may be necessary to retain all four terms. For tubular flow reactors neither the composition nor the temperature need be independent of position, and the energy balance must be written on a differential element of reactor volume. The resultant differential equation must then be solved in conjunction with the differential equation describing the material balance on the differential element. [Pg.254]

We can also obtain these expressions from the energy-balance equation for the steady-state PFTR by simply transforming dzju dt with A,/ V replacing Pw/At. The solutions of these equations for the batch reactor are mathematically identical to those in the PFTR, although the physical interpretations are quite different. [Pg.214]

Up to now we have focused on the steady-state operation of nonisothermal reactors. In this section the unsteady-state energy balance wtU be developed and then applied to CSTRs, plug-flow reactors, and well-mixed batch and semibateh reactors. [Pg.284]

For multiple reactions occurring in either a semibatch or batch reactor, Equation (9-18) can be generalized in the same manner as the steady-state energy balance, to give... [Pg.566]

In an ideal continuous stirred tank reactor, composition and temperature are uniform throughout just as in the ideal batch reactor. But this reactor also has a continuous feed of reactants and a continuous withdrawal of products and unconverted reactants, and the effluent composition and temperature are the same as those in the tank (Fig. 7-fb). A CSTR can be operated under transient conditions (due to variation in feed composition, temperature, cooling rate, etc., with time), or it can be operated under steady-state conditions. In this section we limit the discussion to isothermal conditions. This eliminates the need to consider energy balance equations, and due to the uniform composition the component material balances are simple ordinary differential equations with time as the independent variable ... [Pg.12]

The operating point of an adiabatic CSTR at steady state must lie somewhere on the line that represents the adiabatic energy balance. For an adiabatic PFR at steady state, or for an adiabatic batch reactor, the energy balance line describes the path of the reaction, including the exit condition for a PFR and the final condition for a batch reactor. For any type of adiabatic reactor, if a given point (x, T) does not lie on the line, the energy balance is not satisfied. [Pg.266]


See other pages where Energy balance, batch reactor steady-state is mentioned: [Pg.471]    [Pg.228]    [Pg.591]    [Pg.3716]   
See also in sourсe #XX -- [ Pg.350 ]




SEARCH



Balanced state

Batch reactor

Batch reactor, balance

Energy balance

Energy balance, batch reactor

Energy balances steady state

Energy balancing

Energy reactor

Reactor energy balance

Reactor steady state

Reactors batch reactor

Steady balance

Steady energy balance

© 2024 chempedia.info