Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantiomers amine

The most frequently used approaches for derivatizing carboxylic acids are esterification with a variety of single-enantiomer alcohols, or formation of amides with single-enantiomer amines [234,252]. The formation of amide derivatives requires activation of the carboxylic acid by formation of the acid chloride with thionyl chloride, mixed anhydrides with chloroformates, N-acylimidazoles with 1,1 -carbonyldiimidazole or N-acylureas with dicyclohexylcarbodiimide. Esterification reactions generally re-... [Pg.836]

The molecule has two chiral elements. There is a chiral axis along the bond from the carbon at the 3-position of the thiophene to the nitrogen. This is because there is not free rotation around this single bond. There is also an asymmetric carbon at the methine carbon attached to nitrogen. Because of two chiral elements, there can be 1 or four possible stereoisomers. Dimethenamid with S-configuration at the chiral carbon can be prepared from S-methoxyisopropylamine. This single enantiomer amine is isolated from a racemic mixture of amines by enantioselective enzymatic acylation [58]. The enzyme selectively acylates only one enantiomer and the resultant amide can be readily separated from the unreacted free amine. The undesired enantiomer can then be racemized to provide a source of (after further separation) more of the desired enantiomer. [Pg.215]

Progress has been made toward enantioselective and highly regioselective Michael type alkylations of 2-cyclohexen-l -one using alkylcuprates with chiral auxiliary ligands, e. g., anions of either enantiomer of N-[2-(dimethylamino)ethyl]ephedrine (E. J. Corey, 1986), of (S)-2-(methoxymethyl)pyrrolidine (from L-proline R. K. EHeter, 1987) or of chiramt (= (R,R)-N-(l-phenylethyl)-7-[(l-phenylethyl)iinino]-l,3,5-cycloheptatrien-l-amine, a chiral aminotro-ponimine G. M. Villacorta, 1988). Enantioselectivities of up to 95% have been reported. [Pg.20]

The diastereomeric salts are separated and the individual enantiomers of the amine lib erated by treatment with a base... [Pg.312]

Trigonal pyramidal molecules are chiral if the central atom bears three different groups If one is to resolve substances of this type however the pyramidal inversion that mterconverts enantiomers must be slow at room temperature Pyramidal inversion at nitrogen is so fast that attempts to resolve chiral amines fail because of their rapid racemization... [Pg.314]

When additional substituents ate bonded to other ahcycHc carbons, geometric isomers result. Table 2 fists primary (1°), secondary (2°), and tertiary (3°) amine derivatives of cyclohexane and includes CAS Registry Numbers for cis and trans isomers of the 2-, 3-, and 4-methylcyclohexylamines in addition to identification of the isomer mixtures usually sold commercially. For the 1,2- and 1,3-isomers, the racemic mixture of optical isomers is specified ultimate identification by CAS Registry Number is fisted for the (+) and (—) enantiomers of /n t-2-methylcyclohexylamine. The 1,4-isomer has a plane of symmetry and hence no chiral centers and no stereoisomers. The methylcyclohexylamine geometric isomers have different physical properties and are interconvertible by dehydrogenation—hydrogenation through the imine. [Pg.206]

Because the starting materials were optically active, the products were all pure enantiomers. Later, the synthetic scheme shown in Figure 5 was developed (22,45). Resolution of the racemic mixture was accompHshed at the penultimate stage and the optically active D-threo-amine (7) was converted to florfenicol (2). This synthetic process also resulted in the synthesis of thiamphenicol shown in Figure 6 using 1,1,2,3,3,3-hexafluoropropyl diethylamine (FPA) (46). More recently an improved method of synthesis of florfenicol has been developed (17). [Pg.517]

AGP columns have wide appHcation for the direct separation of enantiomers of many different classes of dmgs, amines, acids, and nonprotolytic compounds (18,23). Acidic dmgs resolved include ibuprofen [15687-27-17, C 2H g02, ketoprofen [22071 -15 ] and naproxen [22204-53-17,... [Pg.99]

Tocainide. Tocainide is a po active primary amine analogue of lidocaine. It consists of the (3)-(—) and the more active (R)-(+) enantiomers. [Pg.113]

The synthesis of prostaglandin Ei in the naturally occurring leva form was achieved by a modification of the sequence described above in which the racemic amine A was resolved with (-)-oc-bromocamphor-Tt-sulfonic acid. The enantiomer of the natural PGEi ([a]57g+57° (cO.5, THE)) was also synthesized (Ref. 3). [Pg.254]

Whenever possible, the chemical reactions involved in the fonnation of diastereomers and their- conversion to separate enantiomers are simple acid-base reactions. For example, naturally occurring (5)-(—)-malic acid is often used to resolve fflnines. One such amine that has been resolved in this way is 1-phenylethylarnine. Amines are bases, and malic acid is an acid. Proton transfer from (5)-(—)-malic acid to a racemic mixture of (/ )- and (5)-1-phenylethylarnine gives a mixture of diastereorneric salts. [Pg.311]

This amide, readily formed from an amine and the anhydride or enzymatically using penicillin amidase, is readily cleaved by penicillin acylase (pH 8.1, A -methylpyrrolidone, 65-95% yield). This deprotection procedure works on peptides, phosphorylated peptides, and oligonucleotides, as well as on nonpeptide substrates. The deprotection of racemic phenylacetamides with penicillin acylase can result in enantiomer enrichment of the cleaved amine and the remaining amide. An immobilized form of penicillin G acylase has been developed. ... [Pg.558]

Apart from tertiary amines, the reaction may be catalyzed by phosphines, e.g. tri- -butylphosphine or by diethylaluminium iodide." When a chiral catalyst, such as quinuclidin-3-ol 8 is used in enantiomerically enriched form, an asymmetric Baylis-Hillman reaction is possible. In the reaction of ethyl vinyl ketone with an aromatic aldehyde in the presence of one enantiomer of a chiral 3-(hydroxybenzyl)-pyrrolizidine as base, the coupling product has been obtained in enantiomeric excess of up to 70%, e.g. 11 from 9 - -10 ... [Pg.29]

Since most often the selective formation of just one stereoisomer is desired, it is of great importance to develop highly selective methods. For example the second step, the aldol reaction, can be carried out in the presence of a chiral auxiliary—e.g. a chiral base—to yield a product with high enantiomeric excess. This has been demonstrated for example for the reaction of 2-methylcyclopenta-1,3-dione with methyl vinyl ketone in the presence of a chiral amine or a-amino acid. By using either enantiomer of the amino acid proline—i.e. (S)-(-)-proline or (/ )-(+)-proline—as chiral auxiliary, either enantiomer of the annulation product 7a-methyl-5,6,7,7a-tetrahydroindan-l,5-dione could be obtained with high enantiomeric excess. a-Substituted ketones, e.g. 2-methylcyclohexanone 9, usually add with the higher substituted a-carbon to the Michael acceptor ... [Pg.242]

The analytical capability of these matrices has been demonstrated for chiral amines [12, 13]. The procedure is illustrated in Fig. 8-4 for the separation of NapEtNH " CIO . Concentrated methanol/dichloromethane solutions of the racemic mixture were placed on a column containing the chiral macrocycle host. The enantiomers of the ammonium salts were resolved chromatographically with mixtures of methanol and dichloromethane as the mobile phase. The amounts of R and S salts in each fraction were determined by polarimetry. Because the chiral supported macrocycle interacts more strongly with S salts, the R salt passes through the column first and the S salt last, as seen in Fig. 8-4. [Pg.211]


See other pages where Enantiomers amine is mentioned: [Pg.202]    [Pg.311]    [Pg.81]    [Pg.63]    [Pg.239]    [Pg.241]    [Pg.250]    [Pg.252]    [Pg.257]    [Pg.218]    [Pg.98]    [Pg.99]    [Pg.129]    [Pg.88]    [Pg.102]    [Pg.1069]    [Pg.239]    [Pg.135]    [Pg.188]    [Pg.212]    [Pg.204]    [Pg.205]    [Pg.211]    [Pg.217]    [Pg.342]    [Pg.55]    [Pg.308]    [Pg.309]    [Pg.1303]    [Pg.350]    [Pg.679]    [Pg.175]    [Pg.688]   
See also in sourсe #XX -- [ Pg.971 ]




SEARCH



Analytical separation, amine enantiomers

Enantiomer composition determination aminals

Enantiomers amine-containing reagents

© 2024 chempedia.info