Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emission spectrum electronic transitions

Each element has unique absorption and emission spectra. That is, each element has its own set of characteristic frequencies of light that it can absorb or emit. Also, Figures 7-10 and 7-11 show only the visible portions of absorption and emission spectra. Electron transitions also take place in regions of the electromagnetic spectrum that the human eye cannot detect. Instmments allow scientists to see into these regions. [Pg.453]

Section 6.13.2 and illustrated in Figure 6.5. The possible inaccuracies of the method were made clear and it was stressed that these are reduced by obtaining term values near to the dissociation limit. Whether this can be done depends very much on the relative dispositions of the various potential curves in a particular molecule and whether electronic transitions between them are allowed. How many ground state vibrational term values can be obtained from an emission spectrum is determined by the Franck-Condon principle. If r c r" then progressions in emission are very short and few term values result but if r is very different from r", as in the A U — system of carbon monoxide discussed in Section 7.2.5.4, long progressions are observed in emission and a more accurate value of Dq can be obtained. [Pg.252]

Moseley found that each K spectrum of Barkla contains two lines, Ka and K(3, and that the L spectra are more complex. Later important work, especially by Siegbahn,38 has shown that M, N, and O spectra exist and are more complex in their turn. Relatively numerous low-intensity lines are now known to exist in all series. Fortunately, the analytical chemist can afford to ignore most of these low-intensity lines in his practical applications of x-ray methods at present. It generally suffices for him to know that x-ray spectra at their most complex are enormously simpler than emission spectra involving valence electrons, and that most x-ratr lines are satisfactorily accounted for on the basis of the simple selection rules that govern electron transitions between energy states. [Pg.28]

Nonradiative transfer of excitation energy requires some interaction between donor and acceptor molecules and occurs if the emission spectrum of the donor overlaps the absorption spectrum of the acceptor, so that several vibronic transitions in the donor must have practically the same energy as the corresponding transitions in the acceptor. Such transitions are coupled, i.e., they are in resonance, and that is why the term resonance energy transfer (RET) or electronic energy transfer (EET) are often used. [Pg.198]

The absorption and emission spectra of a fluorophore are bands spread over a range of wavelengths with at least one peak of maximal absorbance and emission that corresponds to the So-Si and Si—S0 transitions, respectively. There are several vibrational levels within an electronic state and transitions from one electronic to several vibrational states are potentially possible. This determines that the spectra are not sharp but consist of broad bands. The emission spectrum is independent of the excitation wavelength. The energy used to excite the fluorophore to higher electronic and vibrational levels is very rapidly dissipated, sending the fluorophore to the lowest vibrational level of the first electronic excited state (Si) from where the main fluorescent transition occurs [3] (see Fig. 6.1). [Pg.239]

As shown in Fig. 6, there is a correlation between absorption spectrum and emission spectrum. Taking into consideration the Franck-Condon principle, which states that there is no motion of the atoms during an electronic transition, one has to differentiate between the two following possibilities in the one the geometry of the excited state is similar to the one of the ground state (same interatomic distances),... [Pg.14]

The emission spectrum of some PT and PBD polymer bilayer devices cannot be explained by a linear combination of emissions of the components. Thus, white emission of the PLEDs ITO/422/PBD/A1 showed Hof 0.3% at 7 V, and consisted of blue (410 nm), green (530 nm), and red-orange (620 nm) bands. Whereas the first and the last EL peaks are due to the EL from the PBD and the PT layers, respectively, the green emission probably originates from a transition between electronic states in the PBD layer and hole states in the polymer... [Pg.201]

Figure 2.1 Electronic orbitals and the resulting emission spectrum in the hydrogen atom, (a) Bohr orbitals of the hydrogen atom and the resulting spectral series, (b) emission spectrum of atomic hydrogen. The spectrum in (b) is calibrated in terms of wavenumber (P), which is reciprocal wavelength. The Balmer series, which consists of those transitions terminating on the second orbital, give rise to emission lines in the visible region of the spectrum. ( 1990 John Wiley Sons, Inc. Reprinted from Brady, 1990, by permission of the publisher.)... Figure 2.1 Electronic orbitals and the resulting emission spectrum in the hydrogen atom, (a) Bohr orbitals of the hydrogen atom and the resulting spectral series, (b) emission spectrum of atomic hydrogen. The spectrum in (b) is calibrated in terms of wavenumber (P), which is reciprocal wavelength. The Balmer series, which consists of those transitions terminating on the second orbital, give rise to emission lines in the visible region of the spectrum. ( 1990 John Wiley Sons, Inc. Reprinted from Brady, 1990, by permission of the publisher.)...
Figure 5.2 Electronic transitions giving rise to the K X-ray emission spectrum of tin. (a) shows the energy levels and the allowed transitions in X-ray notation. Figure 5.2 Electronic transitions giving rise to the K X-ray emission spectrum of tin. (a) shows the energy levels and the allowed transitions in X-ray notation.
Figure 12.7 Electronic transitions giving rise to the emission spectrum of sodium in the visible, as listed in Table 12.1. The principal series consists of transitions from the 3s level to 3p or a higher p orbital the sharp series from 3p to 4s or a higher s orbital diffuse from 3p to 3d or above and the fundamental from 3d to 4/or higher. The terms below the lines [(R/(3-1.37)2, etc.] are the quantum defect corrections referred to in Section 10.4. Figure 12.7 Electronic transitions giving rise to the emission spectrum of sodium in the visible, as listed in Table 12.1. The principal series consists of transitions from the 3s level to 3p or a higher p orbital the sharp series from 3p to 4s or a higher s orbital diffuse from 3p to 3d or above and the fundamental from 3d to 4/or higher. The terms below the lines [(R/(3-1.37)2, etc.] are the quantum defect corrections referred to in Section 10.4.
Electronic transitions giving rise to the K X-ray emission spectrum of tin 97... [Pg.415]


See other pages where Emission spectrum electronic transitions is mentioned: [Pg.157]    [Pg.382]    [Pg.564]    [Pg.240]    [Pg.347]    [Pg.150]    [Pg.371]    [Pg.759]    [Pg.270]    [Pg.405]    [Pg.5]    [Pg.242]    [Pg.89]    [Pg.337]    [Pg.190]    [Pg.380]    [Pg.156]    [Pg.284]    [Pg.286]    [Pg.375]    [Pg.19]    [Pg.21]    [Pg.37]    [Pg.41]    [Pg.49]    [Pg.70]    [Pg.96]    [Pg.96]    [Pg.226]    [Pg.13]    [Pg.116]    [Pg.113]    [Pg.172]    [Pg.26]    [Pg.18]    [Pg.171]    [Pg.194]    [Pg.135]   
See also in sourсe #XX -- [ Pg.22 , Pg.35 , Pg.36 ]




SEARCH



Electron emission

Electron emission spectra

Electronic emission spectra

Electronic spectra transitions

Emission transitions

Spectrum emission

© 2024 chempedia.info