Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophoresis therapeutic compound

The order of elution of peptides (charged compounds) is governed by a combination of electrophoresis and partitioning, with hydrophobic as well as electrostatic contributions. In this study it was demonstrated that sulfonic acid functionalities in the methacrylate monolith provide high stability and maintain a constant EOF over a wide range of pH (2—12). It was also demonstrated that a better separation of a mixture of therapeutic peptides was obtained at high pH values (Figure 16) due to the suppression of electrostatic attraction. [Pg.466]

Dedicated applications of capillary zone electrophoresis (CZE) coupled to MS are discussed, particularly in the field of drug analysis. Development of other capillary-based electrodriven separation techniques such as non-aqueous capillary electrophoresis (NACE), micellar electrokinetic chromatography (MEKC), and capillary electrochromatography (CEC) hyphenated with MS are also treated. The successful coupling of these electromigration schemes with MS detection provides an efficient and sensitive analytical tool for the separation, quantitation, and identification of numerous pharmaceutical, biological, therapeutic, and environmental compounds. [Pg.478]

Sensors for the detection of enantiomers are of great interest, as so far the on-line monitoring of production processes and medical diagnostics using standard chemical analytical methods is not possible. Quite often only one enantiomer of a chiral compound is actually a bioactive therapeutic. Therefore a proper analysis of the final product is essential. Currently, this involves separation techniques like liquid chromatography, GC and capillary electrophoresis, and determination of enantiomeric purity with circular dichro-ism and specific rotation. These are all off-line procedures and therefore no real-time analysis can be performed. Sensing devices for the distinction of different enantiomers would be a much cheaper, faster and easier-to-use alternative for this task, amenable to automation. [Pg.324]

In any case, both biosensors and biosensing devices have been coupled to microdialysis and are considered among the non-separation-based methods [83]. The drawback of biosensing approaches is that they are usually able to measure just one analyte at a time, in contrast with separation-based methods such as chromatography and electrophoresis, which allow the detection of several analytes. However, if the primary interest is not the identification of unknown compounds, but, for example, the monitoring of variations in a single metabolite or drug, the optimization of therapeutic responses, or the control of a bioprocess via a marker analyte, the use of a specific sensor, which can be employed in a continuous manner, can provide useful information, and can also help to avoid the analysis of hundreds of samples or to reduce the number of animals necessary for a study. [Pg.232]


See other pages where Electrophoresis therapeutic compound is mentioned: [Pg.188]    [Pg.3847]    [Pg.254]    [Pg.723]    [Pg.260]    [Pg.1574]    [Pg.183]    [Pg.254]    [Pg.255]    [Pg.327]    [Pg.1191]    [Pg.147]   
See also in sourсe #XX -- [ Pg.3847 ]




SEARCH



Therapeutic compound

© 2024 chempedia.info