Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relative reactivity electrophilic reactions

An interesting difference between the homoaryl and heteroaryl compounds is found in the reaction of 2-(tributylstannyl)-furan and -thiophene towards benzyhydryl cations.115 Whereas homoarylstannanes appear always to undergo ipso attack by electrophiles, the relative reactivities at the 2 (ipso) and 5 position in these two hetero-arenes are shown in Scheme 7-2 at both positions the reactivity is increased, but the effect is much larger at the 5-position. If C-Sn hyperconjugation is important in stabilising the Wheland intermediate, this unusual regioselectivity might be taken to imply that here there is an early transition state in which such an effect would be less important. [Pg.109]

Rate data are also available for the solvolysis of l-(2-heteroaryl)ethyl acetates in aqueous ethanol. Side-chain reactions such as this, in which a delocalizable positive charge is developed in the transition state, are frequently regarded as analogous to electrophilic aromatic substitution reactions. In solvolysis the relative order of reactivity is tellurienyl> furyl > selenienyl > thienyl whereas in electrophilic substitutions the reactivity sequence is furan > tellurophene > selenophene > thiophene. This discrepancy has been explained in terms of different charge distributions in the transition states of these two classes of reaction (77AHC(21)119>. [Pg.69]

Absolute rate data for Friedel-Crafts reactions are difficult to obtain. The reaction is complicated by sensitivity to moisture and heterogeneity. For this reason, most of the structure-reactivity trends have been developed using competitive methods, rather than by direct measurements. Relative rates are established by allowing the electrophile to compete for an excess of the two reagents. The product ratio establishes the relative reactivity. These studies reveal low substrate and position selectivity. [Pg.581]

The table below gives first-order rate constants for reaction of substituted benzenes with w-nitrobenzenesulfonyl peroxide. From these data, calculate the overall relative reactivity and partial rate factors. Does this reaction fit the pattern of an electrophilic aromatic substitution If so, does the active electrophile exhibit low, moderate, or high substrate and position selectivity ... [Pg.598]

Absolute rate constants for addition reactions of cyanoalkyl radicals are significantly lower than for unsubstituted alkyl radicals falling in the range 103-104 M V1.341 The relative reactivity data demonstrate that they possess some electrophilic character. The more electron-rich VAc is very much less reactive than the electron-deficient AN or MA. The relative reactivity of styrene and acrylonitrile towards cyanoisopropyl radicals would seem to show a remarkable temperature dependence that must, from the data shown (Table 3.6), be attributed to a variation in the reactivity of acrylonitrile with temperature and/or other conditions. [Pg.116]

Absolute rate constants for the attack of aryl radicals on a variety of substrates have been reported by Scaiano and Stewart (Ph ) 7 and Citterio at al. (/j-CIPh-).379,384 The reactions are extremely facile in comparison with additions of other carbon-centered radicals [e.g. jfc(S) = 1.1x10s M"1 s"1 at 25 °C].3,7 Relative reactivities are available for a wider range of monomers and other substrates (Tabic 3.b). Phenyl radicals do not show clear cut electrophilic or... [Pg.117]

The transient radicals produced in reactions of hydroxy radicals with vinyl monomers in aqueous solution have been detected directly by EPR43 439 or UV spectroscopy,440-441 These studies indicate that hydroxy radicals react with monomers and other species at or near the diffusion-controlled limit ( Table 3.7). However, high reactivity does not mean a complete lack of specificity. Hydroxy radicals are electrophilic and trends in the relative reactivity of the hydroxy radicals toward monomers can be explained on this basis/97... [Pg.128]

Rate coefficients and kinetic parameters for iododeboronation were determined for the benzene- and thiophene-boronic acids, and the results are given in Table 256. The relative reactivities derived from this work correlated well with those obtained in a number of other electrophilic substitutions572, which is perhaps surprising in view of the large variation in the entropies of activation. These differences were explained by Brown et al.132 in terms of the transition state for the phenyl compound occurring earlier along the reaction coordinate than for the... [Pg.370]

Waters61 have measured relative rates of p-toluenesulfonyl radical addition to substituted styrenes, deducing from the value of p + = — 0.50 in the Hammett plot that the sulfonyl radical has an electrophilic character (equation 21). Further indications that sulfonyl radicals are strongly electrophilic have been obtained by Takahara and coworkers62, who measured relative reactivities for the addition reactions of benzenesulfonyl radicals to various vinyl monomers and plotted rate constants versus Hammett s Alfrey-Price s e values these relative rates are spread over a wide range, for example, acrylonitrile (0.006), methyl methacrylate (0.08), styrene (1.00) and a-methylstyrene (3.21). The relative rates for the addition reaction of p-methylstyrene to styrene towards methane- and p-substituted benzenesulfonyl radicals are almost the same in accord with their type structure discussed earlier in this chapter. [Pg.1103]

Mixed condensations of esters are subject to the same general restrictions as outlined for mixed aldol reactions (Section 2.1.2). One reactant must act preferentially as the acceptor and another as the nucleophile for good yields to be obtained. Combinations that work best involve one ester that cannot form an enolate but is relatively reactive as an electrophile. Esters of aromatic acids, formic acid, and oxalic acid are especially useful. Some examples of mixed ester condensations are shown in Section C of Scheme 2.14. Entries 9 and 10 show diethyl oxalate as the acceptor, and aromatic esters function as acceptors in Entries 11 and 12. [Pg.150]

The reactivity order of alkenes is that expected for attack by an electrophilic reagent. Reactivity increases with the number of alkyl substituents.163 Terminal alkenes are relatively inert. The reaction has a low AHl and relative reactivity is dominated by entropic factors.164 Steric effects govern the direction of approach of the oxygen, so the hydroperoxy group is usually introduced on the less hindered face of the double bond. A key mechanistic issue in singlet oxygen oxidations is whether it is a concerted process or involves an intermediate formulated as a pcrcpoxide. Most of the available evidence points to the perepoxide mechanism.165... [Pg.1119]

These relative reactivities correlate reasonably well with the observed electrophilic substitution reactions of dibenzothiophene, the 1-position being realistically portrayed by this series of experiments. [Pg.212]

The relative reactivity expressed by an electrophile. Electrophilicity is measured by the relative rate constants for a particular reaction of different electrophiles for a common substrate. 2. The property of being electrophilic. See also Electrophile Nucleophilicity lUPAC (1979) Pure and Appl. Chem. 51, 1725. [Pg.225]


See other pages where Relative reactivity electrophilic reactions is mentioned: [Pg.102]    [Pg.549]    [Pg.153]    [Pg.410]    [Pg.9]    [Pg.142]    [Pg.143]    [Pg.9]    [Pg.487]    [Pg.175]    [Pg.177]    [Pg.368]    [Pg.376]    [Pg.995]    [Pg.61]    [Pg.200]    [Pg.122]    [Pg.154]    [Pg.172]    [Pg.184]    [Pg.302]    [Pg.345]    [Pg.10]    [Pg.692]    [Pg.142]    [Pg.176]    [Pg.240]    [Pg.97]    [Pg.179]    [Pg.232]    [Pg.234]    [Pg.183]    [Pg.95]    [Pg.280]    [Pg.212]    [Pg.95]    [Pg.280]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Electrophiles reactivity

Electrophilic reactivity

Reactivation reaction

Reactive electrophiles

Reactivity electrophilic reactions

Reactivity electrophilicity

Reactivity reaction

Reactivity relative reactivities

Relative reactivities

© 2024 chempedia.info