Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophiles with 3-Heteroatoms

Substitutions at a-nitro (Section 4.3.3.4) and nitrobenzyl electrophiles (Section 4.3.2) have been discussed above. [Pg.86]


V.2.2.1 Palladium-Catalyzed Substitution Reactions of Allylic, Propargylic, and Related Electrophiles with Heteroatom Nucleophiles... [Pg.211]

The allene moiety can also interact electrophilically with NBS or PhSeCl followed by intramolecular attack of the hydroxyl group leading to 3-heteroatom-substituted 2,5-dihydrofurans 362. The chirality in the starting compounds can be efficiently transferred to the 2,5-positions of 2,5-dihydrofurans [167]. [Pg.652]

Several reaction sequences have been reported in which Fischer-type carbene complexes are converted in situ into non-heteroatom-substituted carbene complexes, which then cyclopropanate simple olefins [306,307] (Figure 2.22). This can, for instance, be achieved by treating the carbene complexes with dihydropyridines, forming (isolable) pyridinium ylides. These decompose thermally to yield pyridine and highly electrophilic, non-heteroatom-substituted carbene complexes (Figure 2.22) [46]. [Pg.45]

As with any modern review of the chemical Hterature, the subject discussed in this chapter touches upon topics that are the focus of related books and articles. For example, there is a well recognized tome on the 1,3-dipolar cycloaddition reaction that is an excellent introduction to the many varieties of this transformation [1]. More specific reviews involving the use of rhodium(II) in carbonyl ylide cycloadditions [2] and intramolecular 1,3-dipolar cycloaddition reactions have also appeared [3, 4]. The use of rhodium for the creation and reaction of carbenes as electrophilic species [5, 6], their use in intramolecular carbenoid reactions [7], and the formation of ylides via the reaction with heteroatoms have also been described [8]. Reviews of rhodium(II) ligand-based chemoselectivity [9], rhodium(11)-mediated macrocyclizations [10], and asymmetric rho-dium(II)-carbene transformations [11, 12] detail the multiple aspects of control and applications that make this such a powerful chemical transformation. In addition to these reviews, several books have appeared since around 1998 describing the catalytic reactions of diazo compounds [13], cycloaddition reactions in organic synthesis [14], and synthetic applications of the 1,3-dipolar cycloaddition [15]. [Pg.433]

Since dioxiranes are electrophilic oxidants, heteroatom functionalities with lone pair electrons are among the most reactive substrates towards oxidation. Among such nucleophilic heteroatom-type substrates, those that contain a nitrogen, sulfur or phosphorus atom, or a C=X functionality (where X is N or S), have been most extensively employed, mainly in view of the usefulness of the resulting oxidation products. Some less studied heteroatoms include oxygen, selenium, halogen and the metal centers in organometallic compounds. These transformations are summarized in Scheme 10. We shall present the substrate classes separately, since the heteroatom oxidation is quite substrate-dependent. [Pg.1150]

Electrophilic Attack on Ring Atoms Adjacent to Heteroatom or Conjugated with Heteroatom... [Pg.426]

Our interest in this chapter is in silver-catalyzed cycloisomerization reactions. Therefore, we shall present different silver-catalyzed cycloisomerization reactions as a function of the nucleophilic and electrophilic moiety. Cycloisomerization reactions including the classical ene-yne cycloisomerization (with X = CHR, Scheme 5.1), and the related heterocyclization reactions with heteroatoms embedded in unsaturated systems (X = NR, O Scheme 5.1) belong to the same reaction family. In addition, the alkynyl part can be exchanged for an allene unit. Internal or external nucleophiles (Nu) can then stabilize, through cascade reactions, the positive charge created.24... [Pg.144]

Electrophilic substitutions of alkenyl-, aryl-, and alkynylsilanes with heteroatom-stabilized cationic carbon species generated by the action of a Lewis or Brpnsted acid (acyl cation, oxocarbenium ion, etc.) provide powerful methods for carbon-carbon bond formation. Particularly, intramolecular reactions of alkenylsilanes with oxocarbenium and iminium ions are very valuable for stereoselective construction of cyclic ether and amine units.21-23 For example, the BFj OEt -promoted reaction of (E)- and (Z)-alkenylsilanes bearing an acetal moiety in the alkenyl ligand gives 2,6-disubstituted dihydropyrans in a stereospecific manner (Scheme l).23 Arylsilanes also can be utilized for a similar cyclization.24... [Pg.298]

All neutral azoles contain a pyridine-like nitrogen atom and therefore reactions similar to those of electrophiles with the nitrogen of pyridines occur. However, the tendency for such reactions varies considerably in particular, successive heteroatom substitutions markedly decrease the ease of reaction. One convenient quantitative measure of the tendency for such reactions to occur is found in the basicity of these compounds this is treated in Sections 3.4.1.3.5 and 3.4.I.3.7. [Pg.486]

The propargylic cations [Co2(/i,i/2,Tj3-RC2CR2)(CO)6]+ react as electrophiles with a variety of heteroatom- and carbon-centered nucleophiles to provide, following demetalation, propargylated products with complete regioselectivity. Complexation of the triple bond circumvents isomerization to allenic products. Reaction with asymmetrical ketones results in attack by the cation exclusively (>95%) at the more substituted a-carbon.72,74 (See Scheme 11.)... [Pg.98]

Alkylidenes have been prepared by reduction of alkyli-dynes, by C H oxidative addition from alkyls, and by treatment of unsaturated metal clusters with diazoalkanes. In most instances, the alkylidene adopts a /r2-h coordination mode. However, alkylidenes with heteroatom substituents may also be found in terminal coordination modes. The latter are typically prepared by the Fischer-type carbene route (see Fischer-type Carbene Complexes) (sequential addition of nucleophilic and electrophilic alkylating agents to carbonyl or isocyanide ligands), by condensation of metal fragments with mono- or dimetallic carbene complexes, or by C-H activation of alkylamines. These heteroatom substituted carbenes may also bind in a p3-ri mode, as in (12). [Pg.3958]

Few examples of functionalization on the benzene ring of benzisothiazole have been reported (see Section 4.05.7.2). Studies on the reactivity of unsaturated chains in cycloaddition reactions have been reported (see Section 4.05.7.3). The high reactivity of 4-vinylisothiazolin-3-one A-oxides in Diels-Alder cycloadditions, both as diene and dienophile, is illustrated by their tendency to dimerize. 5-Vinylisothiazole A,A-dioxides react at the vinyl function with different 1,3-dipoles. Isothiazolo-3-sulfolenes 265 give an o-quinodimethane which can be trapped with a dienophile. Different isothiazole derivatives substituted with a carbon chain functionalized with heteroatoms have been prepared as ligands for the formation of complexes. 3-Oxocamphorsulfonimide reacts with the anion of alkynes and several studies on the reactivity of the products with electrophiles are reported. [Pg.584]

How enols and enolates react with heteroatomic electrophiles such as Br2 and NC ch21... [Pg.689]


See other pages where Electrophiles with 3-Heteroatoms is mentioned: [Pg.397]    [Pg.79]    [Pg.695]    [Pg.547]    [Pg.341]    [Pg.341]    [Pg.63]    [Pg.565]    [Pg.81]    [Pg.83]    [Pg.84]    [Pg.84]    [Pg.104]    [Pg.281]    [Pg.130]    [Pg.210]    [Pg.552]    [Pg.65]    [Pg.663]    [Pg.579]    [Pg.8]    [Pg.63]    [Pg.3368]    [Pg.3749]    [Pg.663]    [Pg.663]    [Pg.134]    [Pg.75]   


SEARCH



Electrophilic heteroatoms

Palladium-Catalyzed Substitution Reactions of Allylic, Propargylic, and Related Electrophiles with Heteroatom Nucleophiles

With Electrophiles

© 2024 chempedia.info