Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic spectroscopy of polyatomic molecules

Many of the ideas that are essential to understanding polyatomic electronic spectra have already been developed in the three preceding chapters. As in diatomics, the Born-Oppenheimer separation between electronic and nuclear motions is a useful organizing principle for treating electronic transitions in polyatomics. Vibrational band intensities in polyatomic electronic spectra are frequently (but not always) governed by Franck-Condon factors in the vibrational modes. The rotational fine structure in gas-phase electronic transitions parallels that in polyatomic vibration-rotation spectra (Section 6.6), except that the rotational selection rules in symmetric and asymmetric tops now depend on the relative orientations of the electronic transition moment and the principal axes. Analyses of rotational contours in polyatomic band spectra thus provide valuable clues about the symmetry and assignment of the electronic states involved. [Pg.225]


In electronic spectroscopy of polyatomic molecules the system used for labelling vibronic transitions employs N, to indicate a transition in which vibration N is excited with v" quanta in the lower state and v quanta in the upper state. The pure electronic transition is labelled Og. The system is very similar to the rather less often used system for pure vibrational transitions described in Section 6.2.3.1. [Pg.279]

The second problem relates to the inclusion, or otherwise, of molecular symmetry arguments. There is no avoiding the fact that an understanding of molecular symmetry presents a hurdle (although I think it is a low one) which must be surmounted if selection rules in vibrational and electronic spectroscopy of polyatomic molecules are to be understood. This book surmounts the hurdle in Chapter 4, which is devoted to molecular symmetry but which treats the subject in a non-mathematical way. For those lecturers and students who wish to leave out this chapter much of the subsequent material can be understood but, in some areas, in a less satisfying way. [Pg.466]


See other pages where Electronic spectroscopy of polyatomic molecules is mentioned: [Pg.260]    [Pg.261]    [Pg.263]    [Pg.265]    [Pg.267]    [Pg.269]    [Pg.271]    [Pg.273]    [Pg.275]    [Pg.277]    [Pg.279]    [Pg.281]    [Pg.283]    [Pg.285]    [Pg.260]    [Pg.261]    [Pg.263]    [Pg.265]    [Pg.267]    [Pg.269]    [Pg.271]    [Pg.273]    [Pg.275]    [Pg.277]    [Pg.279]    [Pg.281]    [Pg.283]    [Pg.285]    [Pg.119]    [Pg.225]    [Pg.226]    [Pg.228]    [Pg.230]    [Pg.232]    [Pg.234]    [Pg.236]    [Pg.242]    [Pg.244]    [Pg.246]    [Pg.248]    [Pg.250]    [Pg.252]    [Pg.254]    [Pg.256]    [Pg.258]    [Pg.260]   


SEARCH



Electronic Spectroscopy of High Temperature Open-Shell Polyatomic Molecules

Electronic of molecules

Electronic spectroscopy polyatomic molecules

Molecule electronic

Molecule spectroscopy

© 2024 chempedia.info