Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic reconstructions

One of the most relevant examples of new physical properties appearing at the interface of two materials is related to the interfiice reconstruction of transition metal perovskites. This is the case of LaAlOs/SrTiOs (LAO/STO) interface [9], where two-dimensional (2D) conductivity is observed at the interface between two insulating materials. The different properties are explained in terms of not only electronic reconstruction but also ion displacement, that is, polar deformations across the interface [10]. [Pg.144]

Gordon R., Bender R., Herman G.T. Algebraic reconstruction techniques (ART) for three-dimensional electron micrographs and X-ray photography., J. Theor. Biol., V. 29, 1970, p. 471-481. [Pg.220]

Another important application area is the non-destructive defectoscopy of electronic components. Fig.2a shows an X-ray shadow image of a SMC LED. The 3-dimensional displacement of internal parts can only be visualized non-destructively in the tomographic reconstmction. Reconstructed cross sections through this LED are shown in Fig.2b. In the same way most electronic components in plastic and thin metal cases can be visualized. Even small electronic assemblies like hybrid ICs, magnetic heads, microphones, ABS-sensors can be tested by microtomograpical methods. [Pg.581]

Therefore it is reasonable to prepare already the data acquisition for a three dimensional evaluation in cone-beam-technique by means of two-dimensional detectors. The system is already prepared to integrate a second detector- system for this purpose. An array of up to four flat panel detectors is foreseen. The detector- elements are based on amorphous silicon. Because of the high photon energy and the high dose rates special attention was necessary to protect the read-out electronics. Details of the detector arrangement and the software for reconstruction, visualisation and comparison between the CT results and CAD data are part of a separate paper during this conference [2]. [Pg.586]

Surface states can be divided into those that are intrinsic to a well ordered crystal surface with two-dimensional periodicity, and those that are extrinsic [25]. Intrinsic states include those that are associated with relaxation and reconstruction. Note, however, that even in a bulk-tenuinated surface, the outemiost atoms are in a different electronic enviromuent than the substrate atoms, which can also lead to intrinsic surface states. Extrinsic surface states are associated with imperfections in the perfect order of the surface region. Extrinsic states can also be fomied by an adsorbate, as discussed below. [Pg.293]

Figure Bl.17.11. Reconstructed density of an a,p-tiibulin protein dimer as obtained from electron crystallography (Nogales etal 1997). Note the appearance of the p-sheets ((a), marked B) and the a-helices ((b), marked H) in the density. In particular the right-handed a-helix H6 is very clear. Pictures by courtesy of E Nogales and Academic Press. Figure Bl.17.11. Reconstructed density of an a,p-tiibulin protein dimer as obtained from electron crystallography (Nogales etal 1997). Note the appearance of the p-sheets ((a), marked B) and the a-helices ((b), marked H) in the density. In particular the right-handed a-helix H6 is very clear. Pictures by courtesy of E Nogales and Academic Press.
Thust A and Rosenfeid R 1998 State of the art of focai-series reconstruction in HRTEM Electron Microscopy 1998 14th Int. Cent, on Electron Microscopy (Cancun) voi 1 (Bristoi institute of Physics Pubiishing) pp 119-20... [Pg.1652]

STM found one of its earliest applications as a tool for probing the atomic-level structure of semiconductors. In 1983, the 7x7 reconstructed surface of Si(l 11) was observed for the first time [17] in real space all previous observations had been carried out using diffraction methods, the 7x7 structure having, in fact, only been hypothesized. By capitalizing on the spectroscopic capabilities of the technique it was also proven [18] that STM could be used to probe the electronic structure of this surface (figure B1.19.3). [Pg.1679]

Surface electron charge density can be described in tenus of the work fiinction and the surface dipole moment can be calculated from it ( equatiou (Bl.26.30) and equation (B1.26.31)). Likewise, changes in the chemical or physical state of the surface, such as adsorption or geometric reconstruction, can be observed through a work-fimction modification. For studies related to cathodes, the work fiinction may be the most important surface parameter to be detenuined [52]. [Pg.1895]

This electron microscopy reconstruction has since been extended to high resolution (3 A) where the connections between the helices and the bound retinal molecule are visible together with the seven helices (Figure 12.3c). The helices are tilted by about 20° with respect to the plane of the membrane. This is the first example of a high-resolution three-dimensional protein structure determination using electron microscopy. The structure has subsequently been confirmed by x-ray crystallographic studies to 2 A resolution. [Pg.227]

For a review of how various surface reconstructions appear in a diffraction pattern, see M. A. Van Hove, W. H. Weinberg, and C. -M. Chan. Low-Energy Electron Difraction. Springer, Berlin, 1986, Chapter 3. [Pg.277]

In 1985 Car and Parrinello invented a method [111-113] in which molecular dynamics (MD) methods are combined with first-principles computations such that the interatomic forces due to the electronic degrees of freedom are computed by density functional theory [114-116] and the statistical properties by the MD method. This method and related ab initio simulations have been successfully applied to carbon [117], silicon [118-120], copper [121], surface reconstruction [122-128], atomic clusters [129-133], molecular crystals [134], the epitaxial growth of metals [135-140], and many other systems for a review see Ref. 113. [Pg.82]

We shall first review the basic principles of VASP and than describe exemplary applications to alloys and compounds (a) the calculation of the elastic and dynamic properties of a metallic compound (CoSi2), (b) the surface reconstruction of a semiconducting compound (SiC), and (c) the calculation of the structural and electronic properties of K Sbi-j, Zintl-phases in the licpiid state. [Pg.70]

H = di(Z—iy di are the potential parameters I is the orbital quantum number 3 characterizes the spin direction Z is the nuclear charge). Our experience has show / that such a model potential is convenient to use for calculating physical characteristics of metals with a well know electronic structure. In this case, by fitting the parameters di, one reconstructs the electron spectrum estimated ab initio with is used for further calculations. [Pg.142]

Kolb and Franke have demonstrated how surface reconstruction phenomena can be studied in situ with the help of potential-induced surface states using electroreflectance (ER) spectroscopy.449,488,543,544 The optical properties of reconstructed and unreconstructed Au(100) have been found to be remarkably different. In recent model calculations it was shown that the accumulation of negative charges at a metal surface favors surface reconstruction because the increased sp-electron density at the surface gives rise to an increased compressive stress between surface atoms, forcing them into a densely packed structure.532... [Pg.86]


See other pages where Electronic reconstructions is mentioned: [Pg.143]    [Pg.27]    [Pg.143]    [Pg.27]    [Pg.789]    [Pg.264]    [Pg.289]    [Pg.299]    [Pg.1629]    [Pg.1635]    [Pg.1647]    [Pg.1647]    [Pg.1667]    [Pg.1703]    [Pg.1785]    [Pg.2222]    [Pg.107]    [Pg.285]    [Pg.100]    [Pg.101]    [Pg.226]    [Pg.295]    [Pg.88]    [Pg.273]    [Pg.395]    [Pg.503]    [Pg.289]    [Pg.408]    [Pg.389]    [Pg.853]    [Pg.543]    [Pg.555]    [Pg.77]    [Pg.84]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



© 2024 chempedia.info