Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer distribution functions

Figure C1.5.12.(A) Fluorescence decay of a single molecule of cresyl violet on an indium tin oxide (ITO) surface measured by time-correlated single photon counting. The solid line is tire fitted decay, a single exponential of 480 5 ps convolved witli tire instmment response function of 160 ps fwiim. The decay, which is considerably faster tlian tire natural fluorescence lifetime of cresyl violet, is due to electron transfer from tire excited cresyl violet (D ) to tire conduction band or energetically accessible surface electronic states of ITO. (B) Distribution of lifetimes for 40 different single molecules showing a broad distribution of electron transfer rates. Reprinted witli pennission from Lu andXie [1381. Copyright 1997 American Chemical Society. Figure C1.5.12.(A) Fluorescence decay of a single molecule of cresyl violet on an indium tin oxide (ITO) surface measured by time-correlated single photon counting. The solid line is tire fitted decay, a single exponential of 480 5 ps convolved witli tire instmment response function of 160 ps fwiim. The decay, which is considerably faster tlian tire natural fluorescence lifetime of cresyl violet, is due to electron transfer from tire excited cresyl violet (D ) to tire conduction band or energetically accessible surface electronic states of ITO. (B) Distribution of lifetimes for 40 different single molecules showing a broad distribution of electron transfer rates. Reprinted witli pennission from Lu andXie [1381. Copyright 1997 American Chemical Society.
The reductase in Geobacter sulfurreducens is located in the outer membrane and a soluble Fe(III) reductase has been characterized from cells grown anaerobically with acetate as electron donor and Fe(III) citrate or fumarate as electron acceptor (Kaufmann and Lovley 2001). The enzyme contained Fe, acid-labile S, and FAD. An extracellular c-type cytochrome is distributed in the membranes, the periplasm, and the medium, and functions as a reductase for electron transfer to insoluble iron hydroxides, sulfur, or manganese dioxide (Seeliger et al. 1998). [Pg.165]

As mentioned above, the distribution of the various species in the two adjacent phases changes during a potential sweep which induces the transfer of an ion I across the interface when the potential approaches its standard transfer potential. This flux of charges across the interface leads to a measurable current which is recorded as a function of the applied potential. Such curves are called voltammograms and a typical example for the transfer of pilocarpine [229] is shown in Fig. 6, illustrating that cyclic voltammograms produced by reversible ion transfer reactions are similar to those obtained for electron transfer reactions at a metal-electrolyte solution interface. [Pg.740]

A more general relation between potential and electronic pressure for a density-functional treatment of a metal-metal interface has been given.74) For two metals, 1 and 2, in contact, equilibrium with respect to electron transfer requires that the electrochemical potential of the electron be the same in each. Ignoring the contribution of chemical or short-range forces, this means that —e + (h2/ m)x (3n/7r)2/3 should be the same for both metals. In the Sommerfeld model for a metal38 (uniformly distributed electrons confined to the interior of the metal by a step-function potential), there is no surface potential, so the difference of outer potentials, which is the contact potential, is given by... [Pg.57]

The first of these new, electron transferring components was coenzyme Q (CoQ). Festenstein in R.A. Morton s laboratory in Liverpool had isolated crude preparations from intestinal mucosa in 1955. Purer material was obtained the next year from rat liver by Morton. The material was lipid soluble, widely distributed, and had the properties of a quinone and so was initially called ubiquinone. Its function was unclear. At the same time Crane, Hatefi and Lester in Wisconsin were trying to identify the substances in the electron transport chain acting between NADH and cytochrome b. Using lipid extractants they isolated a new quininoid coenzyme which showed redox changes in respiration. They called it coenzyme Q (CoQ). CoQ was later shown to be identical to ubiquinone. [Pg.89]

In this equation g(r) is the equilibrium radial distribution function for a pair of reactants (14), g(r)4irr2dr is the probability that the centers of the pair of reactants are separated by a distance between r and r + dr, and (r) is the (first-order) rate constant for electron transfer at the separation distance r. Intramolecular electron transfer reactions involving "floppy" bridging groups can, of course, also occur over a range of separation distances in this case a different normalizing factor is used. [Pg.110]

It is well known that under the weak-phase-object approximation (WPOA) [19], the image intensity function is linear to the convolution of the projected potential distribution function cpt (x, y) and the inverse Fourier transform (FT) of the contrast transfer function (CTF) r(u) of the electron microscope ... [Pg.261]

In addition, these thin films have been important in studies of electron transfer, relevant for catalytic systems [64], molecular recognition [65], biomaterial interfaces [66], cell growth [67], crystallization [68], adhesion [69], and many other aspects [70]. SAMs provide ideal model systems, because fine control of surface functional group concentration is possible by preparing mixed SAM systems of two or more compounds, evenly distributed over the surface [71, 72], as two- or... [Pg.378]

The nature of vinylcyclopropane radical cations was elucidated via the electron transfer induced photochemistry of a simple vinylcyclopropane system, in which the two functionalities are locked in the anri-configuration, viz., 4-methylene-l-isopropylbicyclo[3.1.0]hexane (sabinene, 39). Substrates, 39 and 47 are related, except for the orientation of the olefinic group relative to the cyclopropane function trans for 39 versus cis for 47. The product distribution and stereochemistry obtained from 39 elucidate various facets of the mechanism and reveal details of the reactivity and structure of the vinylcyclopropane radical cation 19 . [Pg.292]

Two atoms of the same electronegativity will share electrons equally in a pure covalent bond therefore, any molecule that contains atoms of only one element, like H2 or CI2, has pure covalent bonding. Two atoms of different electronegativities, however, will have either the distorted electron distribution of a polar bond or the complete electron transfer of an ionic bond. Table 5-6 interprets the bonding between two elements as a function of the difference in their electronegativity. [Pg.53]


See other pages where Electron transfer distribution functions is mentioned: [Pg.434]    [Pg.440]    [Pg.13]    [Pg.60]    [Pg.27]    [Pg.88]    [Pg.394]    [Pg.215]    [Pg.398]    [Pg.272]    [Pg.319]    [Pg.2456]    [Pg.359]    [Pg.335]    [Pg.397]    [Pg.1102]    [Pg.618]    [Pg.140]    [Pg.278]    [Pg.143]    [Pg.169]    [Pg.11]    [Pg.323]    [Pg.85]    [Pg.85]    [Pg.361]    [Pg.92]    [Pg.439]    [Pg.152]    [Pg.223]    [Pg.135]    [Pg.39]    [Pg.242]    [Pg.281]    [Pg.30]    [Pg.266]    [Pg.279]    [Pg.114]    [Pg.1186]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



Electron distribution

Electron distribution function

Electron functionalization

Electronic distribution

Transfer function

Transfer function functions

Transference function

© 2024 chempedia.info