Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron nuclear double resonance spectroscopy pulsed experiments

There are also pulse EPR methods that probe the chemical or rather magnetic environment. These are pulse electron nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopy, which allow measuring hyperfine couplings from the unpaired electron spin to surrounding magnetically active nuclei ([20] in Fig. 3 this is a P nucleus). As these experiments are performed in frozen solution (e.g., in all examples of this chapter) or in solids, from the anisotropy and orientation dependence of the hyperfine coupling one can obtain valuable information on the structure up to 1 nm. [Pg.73]

Not all the information can be obtained by the basic CW experiment that is considered by many chemists as all there is to EPR. Elucidating geometric structure or small spin densities requires the separation of small hyperfine couplings or dipole-dipole couplings between electron spins from larger interactions. This can be achieved by double resonance experiments, such as electron nuclear double resonance (ENDOR) [8,9] and electron electron double resonance (ELDOR) spectroscopy and further pulse-EPR techniques [10] such as electron spin echo envelope modulation (ESEEM). Pulse-EPR techniques may also provide more information on dynamic processes than simple CW experiments and may access longer time scales. [Pg.220]

Electron Spin Echo Envelope Modulation (ESEEM) and pulse Electron Nuclear Double Resonance (ENDOR) experiments are considered to be two cornerstones of pulse EPR spectroscopy. These techniques are typically used to obtain the static spin Hamiltonian parameters of powders, frozen solutions, and single crystals. The development of new methods based on these two effects is mainly driven by the need for higher resolution, and therefore, a more accurate estimation of the magnetic parameters. In this chapter, we describe the inner workings of ESEEM and pulse ENDOR experiments as well as the latest developments aimed at resolution and sensitivity enhancement. The advantages and limitations of these techniques are demonstrated through examples found in the literature, with an emphasis on systems of biological relevance. [Pg.13]


See other pages where Electron nuclear double resonance spectroscopy pulsed experiments is mentioned: [Pg.121]    [Pg.5]    [Pg.71]    [Pg.818]    [Pg.520]    [Pg.112]    [Pg.212]   
See also in sourсe #XX -- [ Pg.567 , Pg.568 , Pg.569 , Pg.570 , Pg.571 , Pg.572 , Pg.573 ]




SEARCH



Double pulse

Double resonance

Double resonance spectroscopy

Electron-Nuclear Double

Electron-nuclear double resonance

Electrons resonance spectroscopy

Pulse electron double resonance

Pulsed experiments

Spectroscopy experiments

© 2024 chempedia.info