Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical recognition ether systems

Electrochemical recognition, 39 80 anions, macrocyclic and acyclic polycobalti-cinium ligand systems, 39 134-140 cations, 39 81-133 ammonium cation, 39 128-133 crown ether and bis crow ether ligands containing bipyridyl transition metal recognition sites, 39 111 crown ether dithiocarbamate and dithi-olene complexes, 39 123-124 di-h-cyclopentadienyl-molybdenum(IV) and -tungsten(IV) crown ether complexes, 39 107-108... [Pg.88]

Fig. 16. A photo- and electrochemically controllable molecular shuttle. The unperturbed rotaxane 116+ exists preferentially in the translational isomer in which the BPP34C10 crown ether resides around the bipyridinium unit, a Photochemical excitation of the Ru(bipy)3 unit results in PET to the bipyridinium site, and consequent translation of the crown ether to the 3,3dimethylbipyridinium unit, which is a less efficient recognition site for the cyclophane CBPQT4+ than a bipyridinium system. This process occurs only in the presence of a sacrificial reductant which reduces the Ru(III) center back to its Ru(II) state in order to prevent charge recombination, b Conversely, upon electrochemical reduction of the bipyridinium unit, the crown ether takes up residency around the 3,3 -dimethylbipyridi-nium site. This process is reversed through electrochemical oxidation of the bipyridinium radical cation back to the dication... Fig. 16. A photo- and electrochemically controllable molecular shuttle. The unperturbed rotaxane 116+ exists preferentially in the translational isomer in which the BPP34C10 crown ether resides around the bipyridinium unit, a Photochemical excitation of the Ru(bipy)3 unit results in PET to the bipyridinium site, and consequent translation of the crown ether to the 3,3dimethylbipyridinium unit, which is a less efficient recognition site for the cyclophane CBPQT4+ than a bipyridinium system. This process occurs only in the presence of a sacrificial reductant which reduces the Ru(III) center back to its Ru(II) state in order to prevent charge recombination, b Conversely, upon electrochemical reduction of the bipyridinium unit, the crown ether takes up residency around the 3,3 -dimethylbipyridi-nium site. This process is reversed through electrochemical oxidation of the bipyridinium radical cation back to the dication...

See other pages where Electrochemical recognition ether systems is mentioned: [Pg.81]    [Pg.827]    [Pg.780]    [Pg.352]    [Pg.507]    [Pg.84]    [Pg.763]    [Pg.106]    [Pg.207]    [Pg.207]    [Pg.216]    [Pg.227]    [Pg.49]    [Pg.730]    [Pg.104]    [Pg.453]   
See also in sourсe #XX -- [ Pg.109 , Pg.110 , Pg.111 ]




SEARCH



Electrochemical recognition

Electrochemical recognition ethers

Electrochemical systems

Recognition systems

© 2024 chempedia.info