Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastic modulus relaxed

Division of the total tensile strain under conditions of F = const into several components 25,6R,69) produced interesting results (see Fig. 8). It has been found that the behavior of molten low-density polyethylene (Fig. 8a) is qualitatively different from polyisobutylene (Fig. 8 b) the extension of which was performed under temperature conditions where the high-elasticity modulus, relaxation time, and initial Newtonian viscosity practically coincided (in the linear range) in the compared polymers. Flow curves in the investigated range of strain velocities were also very close to one another (Fig. 21). It can be seen from the comparison of dependencies given in Fig. 8a,... [Pg.30]

The ultrasonic relaxation loss may involve a thermally activated stmctural relaxation associated with a shifting of bridging oxygen atoms between two equihbrium positions (169). The velocity, O, of ultrasonic waves in an infinite medium is given by the following equation, where M is the appropriate elastic modulus, and density, d, is 2.20 g/cm. ... [Pg.507]

To understand the global mechanical and statistical properties of polymeric systems as well as studying the conformational relaxation of melts and amorphous systems, it is important to go beyond the atomistic level. One of the central questions of the physics of polymer melts and networks throughout the last 20 years or so dealt with the role of chain topology for melt dynamics and the elastic modulus of polymer networks. The fact that the different polymer strands cannot cut through each other in the... [Pg.493]

The effect of oxidative irradiation on mechanical properties on the foams of E-plastomers has been investigated. In this study, stress relaxation and dynamic rheological experiments are used to probe the effects of oxidative irradiation on the stmcture and final properties of these polymeric foams. Experiments conducted on irradiated E-plastomer (octene comonomer) foams of two different densities reveal significantly different behavior. Gamma irradiation of the lighter foam causes stmctural degradation due to chain scission reactions. This is manifested in faster stress-relaxation rates and lower values of elastic modulus and gel fraction in the irradiated samples. The incorporation of O2 into the polymer backbone, verified by IR analysis, conftrms the hypothesis of... [Pg.181]

Even in cases where the rigid polymer forms the continuous phase, the elastic modulus is less than that of the pure matrix material. Thus two-phase systems have a greater creep compliance than does the pure rigid phase. Many of these materials craze badly near their yield points. When crazing occurs, the creep rate becomes much greater, and stress relaxes rapidly if the deformation is held constant. [Pg.117]

The spring is elastically storing energy. With time this energy is dissipated by flow within the dashpot. An experiment performed using the application of rapid stress in which the stress is monitored with time is called a stress relaxation experiment. For a single Maxwell model we require only two of the three model parameters to describe the decay of stress with time. These three parameters are the elastic modulus G, the viscosity r and the relaxation time rm. The exponential decay described in Equation (4.16) represents a linear response. As the strain is increased past a critical value this simple decay is lost. [Pg.107]

The high frequency elastic modulus does not appear in the retardation spectrum but is an intrinsic part of the relaxation spectrum. These features are reinforced when the interrelationship between the spectra are considered. [Pg.135]

Fig.5. The elastic modulus G (co) and dissipative modulus G (co) for linear top) and three-arm-star branched (bottom) polyisoprene from [5]. Note the broad range of relaxation times indicated by the width of the peak in the star-polymer... Fig.5. The elastic modulus G (co) and dissipative modulus G (co) for linear top) and three-arm-star branched (bottom) polyisoprene from [5]. Note the broad range of relaxation times indicated by the width of the peak in the star-polymer...
The stress relaxation properties of a high molecular weight polybutadiene with a narrow molecular weight distribution are shown in Figure 1. The behavior is shown in terms of the apparent rubber elasticity stress relaxation modulus for three differrent extension ratios and the experiment is carried on until rupture in all three cases. A very wide rubber plateau extending over nearly 6 decades in time is observed for the smallest extension ratio. However, the plateau is observed to become narrower with increasing extension... [Pg.48]

Figure 1. Stress relaxation curves for three different extension ratios. Uncross-linked high-vinyl polybutadiene with a weight average molecular weight of 2 million and a reference temperature of 283 K. G is the apparent rubber elasticity modulus calculated from classical affine theory. (Solid line is data from Ref. 1). Figure 1. Stress relaxation curves for three different extension ratios. Uncross-linked high-vinyl polybutadiene with a weight average molecular weight of 2 million and a reference temperature of 283 K. G is the apparent rubber elasticity modulus calculated from classical affine theory. (Solid line is data from Ref. 1).
Most polymers are applied either as elastomers or as solids. Here, their mechanical properties are the predominant characteristics quantities like the elasticity modulus (Young modulus) E, the shear modulus G, and the temperature-and frequency dependences thereof are of special interest when a material is selected for an application. The mechanical properties of polymers sometimes follow rules which are quite different from those of non-polymeric materials. For example, most polymers do not follow a sudden mechanical load immediately but rather yield slowly, i.e., the deformation increases with time ( retardation ). If the shape of a polymeric item is changed suddenly, the initially high internal stress decreases slowly ( relaxation ). Finally, when an external force (an enforced deformation) is applied to a polymeric material which changes over time with constant (sinus-like) frequency, a phase shift is observed between the force (deformation) and the deformation (internal stress). Therefore, mechanic modules of polymers have to be expressed as complex quantities (see Sect. 2.3.5). [Pg.21]

B. Relation of Entropy Theory to Elastic Modulus Model of Structural Relaxation... [Pg.126]

When a material is subjected to a tensile or compressive stress, Eqs. (5.63) through (5.74) should be developed with the shear modulus, G, replaced by the elastic modulus, E, the viscosity, rj, replaced by a quantity known as Trouton s coefficient of viscous traction, k, and shear stress, r, replaced by the tensile or compressive stress, a. It can be shown that for incompressible materials, k = 3r], because the flow under tensile or compressive stress occurs in the direction of stress as well as in the two other directions perpendicular to the axis of stress. Recall from Section 5.1.1.3 that for incompressible solids, E = 3G therefore the relaxation or retardation times are k/E. [Pg.454]


See other pages where Elastic modulus relaxed is mentioned: [Pg.277]    [Pg.530]    [Pg.177]    [Pg.70]    [Pg.510]    [Pg.239]    [Pg.687]    [Pg.139]    [Pg.44]    [Pg.7]    [Pg.126]    [Pg.110]    [Pg.201]    [Pg.105]    [Pg.38]    [Pg.49]    [Pg.175]    [Pg.139]    [Pg.327]    [Pg.58]    [Pg.97]    [Pg.227]    [Pg.177]    [Pg.163]   
See also in sourсe #XX -- [ Pg.748 , Pg.751 , Pg.759 , Pg.763 , Pg.764 ]




SEARCH



Elastic relaxation

Elasticity modulus

© 2024 chempedia.info