Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double matched

Figure B3.4.10. Schematic figure of a ID double-well potential surface. The reaction probabilities exliibit peaks whenever the collision energy matches the energy of the resonances, which are here the quasi-bound states in the well (with their energy indicated). Note that the peaks become wider for the higher energy resonances—the high-energy resonance here is less bound and Teaks more toward the asymptote than do the low-energy ones. Figure B3.4.10. Schematic figure of a ID double-well potential surface. The reaction probabilities exliibit peaks whenever the collision energy matches the energy of the resonances, which are here the quasi-bound states in the well (with their energy indicated). Note that the peaks become wider for the higher energy resonances—the high-energy resonance here is less bound and Teaks more toward the asymptote than do the low-energy ones.
For examples of different types of similarity measures, see Table 6-2. The Tanimoto similarity measure is monotonic with that of Dice (alias Sorensen, Czekanowski), which uses an arithmetic-mean normaJizer, and gives double weight to the present matches. Russell/Rao (Table 6-2) add the matching absences to the nor-malizer in Tanimoto the cosine similarity measure [19] (alias Ochiai) uses a geometric mean normalizer. [Pg.304]

Select atom from model kit then double click on atom in model Valences on the new atom must match bonds in the model or replacement will not occur... [Pg.1262]

Peak matching can be done on quadrupole and magnetic-sector mass spectrometers, but only the latter, particularly as double-focusing instruments, have sufficiently high resolution for the technique to be useful at high mass. [Pg.274]

Genes are constructed from sets of deoxyribonucleic acids (DNA), which in turn consist of chains of nucleotides. These chains occur in matched pairs, twisted around each other (a double helix). [Pg.421]

Dye lasers, frequency doubled if necessary, provide ideal sources for such experiments. The radiation is very intense, the line width is small ( 1 cm ) and the wavenumber may be tuned to match any absorption band in the visible or near-ultraviolet region. [Pg.377]

A direct descendant of these matches is the nontoxic modem double-tipped strike-anywhere (SAW), the large "kitchen" match version, or the smaller "peimy box" variety. It is based on the invention of two Frenchmen, Henri SAvnne and Fmile David Cahen, who used the nonpoisonous compound tetraphosphoms trisulfide, P4S3, as a phosphoms substitute and acquired a U.S. patent in 1898. [Pg.1]

Fig. 3. The lattice-matched double heterostmcture, where the waves shown in the conduction band and the valence band are wave functions, L (Ar), representing probabiUty density distributions of carriers confined by the barriers. The chemical bonds, shown as short horizontal stripes at the AlAs—GaAs interfaces, match up almost perfectly. The wave functions, sandwiched in by the 2.2 eV potential barrier of AlAs, never see the defective bonds of an external surface. When the GaAs layer is made so narrow that a single wave barely fits into the allotted space, the potential well is called a quantum well. Fig. 3. The lattice-matched double heterostmcture, where the waves shown in the conduction band and the valence band are wave functions, L (Ar), representing probabiUty density distributions of carriers confined by the barriers. The chemical bonds, shown as short horizontal stripes at the AlAs—GaAs interfaces, match up almost perfectly. The wave functions, sandwiched in by the 2.2 eV potential barrier of AlAs, never see the defective bonds of an external surface. When the GaAs layer is made so narrow that a single wave barely fits into the allotted space, the potential well is called a quantum well.
Match batch size to container size of critical components, using an integral number of whole containers, where possible Double check materials being added to reactor Complete batch loading sheets for each batch run Use of operator sign-off sheets Preweigh reactants before transferring to reactor Verify raw materials (certificate of analysis for critical materials)... [Pg.46]

For longer units requiring support plates for the tubes, the pressure drop will still be very small or negligible and can be estimated by Figure 10-140 using the appropriate baffle cut curve to match the tube support cut-out of about 50%. Kem recommends that the flow be considered similar to an annulus of a double pipe and treated accordingly. [Pg.214]

The double helix model provides a simple explanation for cell division and reproduction. In the reproduction process, the two DNA chains unwind from each other. As this happens, a new matching chain of DNA is synthesized on each of the original ones, creating two double helices. Since the base pairs in each new double helix must match in the same way as in the original, the two new double helices must be identical to the original. Exact replication of genetic data is thereby accomplished, however complex that data may be. [Pg.628]

On the other hand, high levels of diastereoselectivity are relatively easy to achieve in matched double asymmetric reactions since the intrinsic diastereofacial preference of the chiral aldehyde reinforces that of the reagent, and in many cases it has been possible to achieve synthetically useful levels of matched diastereoselection by using only moderately enantioselective chiral allylboron reagents. Finally, it is worth reminding the reader that both components of double asymmetric reactions need to be both chiral and nonracemic for maximum diastereoselectivity to be realized. [Pg.298]

The reaction of methyl 4-formyl-2-mcthylpentanoate and the chiral (Z)-2-butenylboronate clearly shows 52b-103, however, that the chiral auxiliary is not sufficiently enantioselective to increase the diastereoselectivity to >90% in either the matched [( + )-auxiliary] or mismatched [(—)-auxiliary] case. This underscores the requirement that highly enantioselective chiral reagents be utilized in double asymmetric reactions. [Pg.299]

The cyclohexyloxy(dimethyl)silyl unit in 8 serves as a hydroxy surrogate and is converted into an alcohol via the Tamao oxidation after the allylboration reaction. The allylsilane products of asymmetric allylboration reactions of the dimethylphenylsilyl reagent 7 are readily converted into optically active 2-butene-l, 4-diols via epoxidation with dimethyl dioxirane followed by acid-catalyzed Peterson elimination of the intermediate epoxysilane. Although several chiral (Z)-y-alkoxyallylboron reagents were described in Section 1.3.3.3.3.1.4., relatively few applications in double asymmetric reactions with chiral aldehydes have been reported. One notable example involves the matched double asymmetric reaction of the diisopinocampheyl [(Z)-methoxy-2-propenyl]boron reagent with a chiral x/ -dialkoxyaldehyde87. [Pg.307]


See other pages where Double matched is mentioned: [Pg.880]    [Pg.880]    [Pg.1581]    [Pg.1972]    [Pg.1976]    [Pg.391]    [Pg.185]    [Pg.229]    [Pg.121]    [Pg.121]    [Pg.121]    [Pg.131]    [Pg.1]    [Pg.50]    [Pg.136]    [Pg.87]    [Pg.338]    [Pg.118]    [Pg.965]    [Pg.125]    [Pg.567]    [Pg.199]    [Pg.52]    [Pg.146]    [Pg.448]    [Pg.1225]    [Pg.676]    [Pg.624]    [Pg.20]    [Pg.62]    [Pg.67]    [Pg.289]    [Pg.298]    [Pg.298]    [Pg.299]    [Pg.304]    [Pg.307]   
See also in sourсe #XX -- [ Pg.430 , Pg.437 , Pg.448 , Pg.452 , Pg.472 , Pg.475 , Pg.480 ]




SEARCH



© 2024 chempedia.info