Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersion vibrational

Airborne transport Vibrofluidized bed Dispersion Vibrated fluid bed... [Pg.1362]

While a laser beam can be used for traditional absorption spectroscopy by measuring / and 7q, the strength of laser spectroscopy lies in more specialized experiments which often do not lend themselves to such measurements. Other techniques are connnonly used to detect the absorption of light from the laser beam. A coimnon one is to observe fluorescence excited by the laser. The total fluorescence produced is nonnally proportional to the amount of light absorbed. It can be used as a measurement of concentration to detect species present in extremely small amounts. Or a measurement of the fluorescence intensity as the laser frequency is scaimed can give an absorption spectrum. This may allow much higher resolution than is easily obtained with a traditional absorption spectrometer. In other experiments the fluorescence may be dispersed and its spectrum detennined with a traditional spectrometer. In suitable cases this could be the emission from a single electronic-vibrational-rotational level of a molecule and the experimenter can study how the spectrum varies with level. [Pg.1123]

The first temi results in Rayleigh scattering which is at the same frequency as the exciting radiation. The second temi describes Raman scattering. There will be scattered light at (Vq - and (Vq -i- v ), that is at sum and difference frequencies of the excitation field and the vibrational frequency. Since a. x is about a factor of 10 smaller than a, it is necessary to have a very efficient method for dispersing the scattered light. [Pg.1159]

Light sources can either be broadband, such as a Globar, a Nemst glower, an incandescent wire or mercury arc lamp or they can be tunable, such as a laser or optical parametric oscillator (OPO). In the fomier case, a monocln-omator is needed to achieve spectral resolution. In the case of a tunable light source, the spectral resolution is detemiined by the linewidth of the source itself In either case, the spectral coverage of the light source imposes limits on the vibrational frequencies that can be measured. Of course, limitations on the dispersing element and detector also affect the overall spectral response of the spectrometer. [Pg.1162]

Tunable visible and ultraviolet lasers were available well before tunable infrared and far-infrared lasers. There are many complexes that contain monomers with visible and near-UV spectra. The earliest experiments to give detailed dynamical infonnation on complexes were in fact those of Smalley et al [22], who observed laser-induced fluorescence (LIF) spectra of He-l2 complexes. They excited the complex in the I2 B <—A band, and were able to produce excited-state complexes containing 5-state I2 in a wide range of vibrational states. From line w idths and dispersed fluorescence spectra, they were able to study the rates and pathways of dissociation. Such work was subsequently extended to many other systems, including the rare gas-Cl2 systems, and has given quite detailed infonnation on potential energy surfaces [231. [Pg.2447]

Figure Cl.5.9. Vibrationally resolved dispersed fluorescence spectra of two different single molecules of terrylene in polyetliylene. The excitation wavelengtli for each molecule is indicated and tlie spectra are plotted as the difference between excitation and emitted wavenumber. Each molecule s spectmm was recorded on a CCD detector at two different settings of tire spectrograph grating to examine two different regions of tlie emission spectmm. Type 1 and type 2 spectra were tentatively attributed to terrylene molecules in very different local environments, although tlie possibility tliat type 2 spectra arise from a chemical impurity could not be mled out. Furtlier details are given in Tchenio [105-1071. Figure Cl.5.9. Vibrationally resolved dispersed fluorescence spectra of two different single molecules of terrylene in polyetliylene. The excitation wavelengtli for each molecule is indicated and tlie spectra are plotted as the difference between excitation and emitted wavenumber. Each molecule s spectmm was recorded on a CCD detector at two different settings of tire spectrograph grating to examine two different regions of tlie emission spectmm. Type 1 and type 2 spectra were tentatively attributed to terrylene molecules in very different local environments, although tlie possibility tliat type 2 spectra arise from a chemical impurity could not be mled out. Furtlier details are given in Tchenio [105-1071.
Tchenio P, Myers A B and Moerner W E 1993 Vibrational analysis of the dispersed fluorescence from single molecules of terrylene in polyethylene Chem. Phys. Lett. 213 325-32... [Pg.2508]

Iditional importance is that the vibrational modes are dependent upon the reciprocal e vector k. As with calculations of the electronic structure of periodic lattices these cal-ions are usually performed by selecting a suitable set of points from within the Brillouin. For periodic solids it is necessary to take this periodicity into account the effect on the id-derivative matrix is that each element x] needs to be multiplied by the phase factor k-r y). A phonon dispersion curve indicates how the phonon frequencies vary over tlie luin zone, an example being shown in Figure 5.37. The phonon density of states is ariation in the number of frequencies as a function of frequency. A purely transverse ition is one where the displacement of the atoms is perpendicular to the direction of on of the wave in a pmely longitudinal vibration tlie atomic displacements are in the ition of the wave motion. Such motions can be observed in simple systems (e.g. those contain just one or two atoms per unit cell) but for general three-dimensional lattices of the vibrations are a mixture of transverse and longitudinal motions, the exceptions... [Pg.312]

Molecular chirality is most often observed experimentally through its optical activity, which is the elfect on polarized light. The spectroscopic techniques for measuring optical activity are optical rotary dispersion (ORD), circular di-chroism (CD), and vibrational circular dichroism (VCD). [Pg.113]

Eor the preparation of suspensions and emulsions, coUoid mills and homogenizers, respectively, are used. Ultrasonic mills that utilize vibrating reeds in restricted chambers to reduce the particle size of the dispersed ingredients can also be employed (see Colloids Ultrasonics). [Pg.233]

Spider Silk. Spider silks function ki prey capture, reproduction, and as vibration receptors, safety lines, and dispersion tools. Spider silks are synthesized ki glands located ki the abdomen and spun through a series of orifices (spinnerets). The types and nature of the various silks are diverse and depend on the type of spider (2). Some general categories of silks and the glands responsible for thek production are Hsted in Table 1. [Pg.76]

Vibrating conveyors employing direc t contacting of sohds with hot, humid air have also been employed for the agglomeration of fine powders, chiefly for the preparation of agglomerated water-dispersible food products. Control of inlet-air temperature and dew point permits the uniform addition of small quantities of liquids to sohds by con-... [Pg.1224]


See other pages where Dispersion vibrational is mentioned: [Pg.122]    [Pg.37]    [Pg.722]    [Pg.27]    [Pg.122]    [Pg.37]    [Pg.722]    [Pg.27]    [Pg.74]    [Pg.1058]    [Pg.1125]    [Pg.1164]    [Pg.1193]    [Pg.1786]    [Pg.1982]    [Pg.2361]    [Pg.2486]    [Pg.2495]    [Pg.313]    [Pg.65]    [Pg.39]    [Pg.377]    [Pg.401]    [Pg.76]    [Pg.97]    [Pg.334]    [Pg.513]    [Pg.22]    [Pg.314]    [Pg.559]    [Pg.422]    [Pg.251]    [Pg.299]    [Pg.20]    [Pg.1443]    [Pg.1853]    [Pg.1857]    [Pg.116]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



© 2024 chempedia.info