Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Direct numerical simulations—its limitation on

Computational fluid dynamics enables us to investigate the time-dependent behavior of what happens inside a reactor with spatial resolution from the micro to the reactor scale. That is to say, CFD in itself allows a multi-scale description of chemical reactors. To this end, for single-phase flow, the space resolution of the CFD model should go down to the scales of the smallest dissipative eddies (Kolmogorov scales) (Pope, 2000), which is inversely proportional to Re-3/4 and of the orders of magnitude of microns to millimeters for typical reactors. On such scales, the Navier-Stokes (NS) equations can be expected to apply directly to predict the hydrodynamics of well-defined system, resolving all the meso-scale structures. That is the merit of the so-called DNS. [Pg.10]

For multiphase flow that is normally encountered in fluidized bed reactors, there are two kinds of definitions of the micro-scale first, it is the scale with respect to the smaller one between Kolmogorov eddies and particles second, it is the scale with respect to the smallest space required for two-phase continuum. If the first definition is adopted, the [Pg.10]


See other pages where Direct numerical simulations—its limitation on is mentioned: [Pg.10]   


SEARCH



Direct limit

Direct numerical simulation

Limitations directions

On limitations

© 2024 chempedia.info