Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.3- dipole molecular orbitals

Figure Bl.6.12 Ionization-energy spectrum of carbonyl sulphide obtained by dipole (e, 2e) spectroscopy [18], The incident-electron energy was 3.5 keV, the scattered incident electron was detected in the forward direction and the ejected (ionized) electron detected in coincidence at 54.7° (angular anisotropies cancel at this magic angle ). The energy of the two outgoing electrons was scaimed keeping the net energy loss fixed at 40 eV so that the spectrum is essentially identical to the 40 eV photoabsorption spectrum. Peaks are identified with ionization of valence electrons from the indicated molecular orbitals. Figure Bl.6.12 Ionization-energy spectrum of carbonyl sulphide obtained by dipole (e, 2e) spectroscopy [18], The incident-electron energy was 3.5 keV, the scattered incident electron was detected in the forward direction and the ejected (ionized) electron detected in coincidence at 54.7° (angular anisotropies cancel at this magic angle ). The energy of the two outgoing electrons was scaimed keeping the net energy loss fixed at 40 eV so that the spectrum is essentially identical to the 40 eV photoabsorption spectrum. Peaks are identified with ionization of valence electrons from the indicated molecular orbitals.
Obtain the dipole moment of methylenecyclopropene by a MNDO calculation and compare your answer with the result obtained from Hnckel molecular orbital calculations. [Pg.297]

You can interpret results, including dipole moments and atomic charges, using the simple concepts and familiar vocabulary of the Linear Combination of Atomic Orbitals (LCAO)-molecular orbital (MO) theory. [Pg.33]

Energy, geometry, dipole moment, and the electrostatic potential all have a clear relation to experimental values. Calculated atomic charges are a different matter. There are various ways to define atomic charges. HyperChem uses Mulliken atomic charges, which are commonly used in Molecular Orbital theory. These quantities have only an approximate relation to experiment their values are sensitive to the basis set and to the method of calculation. [Pg.137]

Frontier molecular orbital theory correctly rationalizes the regioselectivity of most 1,3-dipolar cycloadditions (73JA7287). When nitrile ylides are used as 1,3-dipoles, the dipole... [Pg.55]

Oxirane (1) and methyloxirane (3) are miscible with water, ethyloxirane is very soluble in water, while compounds such as cyclopentene oxide and higher oxiranes are essentially insoluble (B-73MI50501) (for a discussion of the solubilities of heterocycles, see (63PMH(l)l77)). Other physical properties of heterocycles, such as dipole moments and electrochemical properties, are discussed in various chapters of pmh. The optical activity of chiral oxiranes has been investigated by ab initio molecular orbital methods (8UA1023). [Pg.97]

The remainder of the optimization output file displays the population analysis, molecular orbitals (if requested with Pop=Reg) and atomic charges and dipole moment for the optimized structure. [Pg.45]

The type of conjugation is also reflected in the frontier orbital profile, the charge distribution, and the permanent dipole moments. The results of semiempirical calculations on l-methylpyridinium-3-olate (16), Malloapeltine (17), Trigollenine (18), and Homarine (19) are presented in Scheme 7. Characteristically for the class of conjugated mesomeric betaines, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are distributed over the entire molecule as examplifled for l-methylpyridinium-3-olate. It was shown that 90% of the... [Pg.75]

For large interchain separations (8 A < R < 30 A), the LCAO coefficients of a given molecular orbital are localized on a single chain, as intuitively expected. The lowest excited state of these dimers results from a destructive interaction of the two intrachain transition dipole moments, whereas a constructive interaction prevails for the second excited stale. This result is fully consistent with the molcc-... [Pg.60]

The raw output of a molecular structure calculation is a list of the coefficients of the atomic orbitals in each LCAO (linear combination of atomic orbitals) molecular orbital and the energies of the orbitals. The software commonly calculates dipole moments too. Various graphical representations are used to simplify the interpretation of the coefficients. Thus, a typical graphical representation of a molecular orbital uses stylized shapes (spheres for s-orbitals, for instance) to represent the basis set and then scales their size to indicate the value of the coefficient in the LCAO. Different signs of the wavefunctions are typically represented by different colors. The total electron density at any point (the sum of the squares of the occupied wavefunctions evaluated at that point) is commonly represented by an isodensity surface, a surface of constant total electron density. [Pg.700]

Mulliken, R.S. Electronic Structures of Molecules. XI. Electroaffinity, Molecular Orbitals and Dipole Moments J. Chem. Phys. 1935, 3, 573-585. [Pg.341]

Molecular orbital calculations, whether by ab initio or semiempirical methods, can be used to obtain structures (bond distances and angles), energies (such as heats of formation), dipole moments, ionization energies, and other properties of molecules, ions, and radicals—not only of stable ones, but also of those so unstable that these properties cannot be obtained from experimental measurements." Many of these calculations have been performed on transition states (p. 279) this is the only way to get this information, since transition states are not, in general, directly observable. Of course, it is not possible to check data obtained for unstable molecules and transition states against any experimental values, so that the reliability of the various MO methods for these cases is always a question. However, our confidence in them does increase when (1) different MO methods give similar results, and (2) a particular MO method works well for cases that can be checked against experimental methods. ... [Pg.34]


See other pages where 1.3- dipole molecular orbitals is mentioned: [Pg.1792]    [Pg.3026]    [Pg.33]    [Pg.137]    [Pg.227]    [Pg.325]    [Pg.33]    [Pg.31]    [Pg.431]    [Pg.162]    [Pg.49]    [Pg.797]    [Pg.14]    [Pg.165]    [Pg.255]    [Pg.189]    [Pg.147]    [Pg.97]    [Pg.380]    [Pg.213]    [Pg.123]    [Pg.123]    [Pg.126]    [Pg.126]    [Pg.375]    [Pg.40]    [Pg.1082]    [Pg.44]    [Pg.19]    [Pg.240]    [Pg.54]    [Pg.1082]    [Pg.298]    [Pg.424]    [Pg.10]    [Pg.279]    [Pg.42]   
See also in sourсe #XX -- [ Pg.247 ]




SEARCH



Molecular dipole

© 2024 chempedia.info