Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diphosphine ligands double bond hydrogenation

As enantioselective hydrogenations of prochiral substrates are undoubtedly the most common applications of chiral diphosphine ligands, a broad screening of our ligands was undertaken with some commonly used standard substrates. As substrates for the hydrogenation of C=C double bonds dimethyl itaconate (DlMl), methyl 2-acetamidoacrylate (MAA), methyl acetamidocinnamate (MAC) as an a-amino acid precursor, and ethyl (Z)-3-acetamidobutenoate ( 3-ENAM1DE) as a p-amino acid precursor were chosen (see Eig. 1.4.5). [Pg.120]

The reduction of lactam substrates containing proximal exo double bonds may be achieved in high e.e. as demonstrated by the reduction of 3-alkylidene-2-piperidones (Scheme 19)119. Cyclic amino acids may be prepared by, for example, asymmetric hydrogenation of 3 to 4 in up to 79% e.e.120 and the reduction of 5 to 6 in 99% e.e.121. In the latter case a number of chiral diphosphines were screened, and the best results were obtained using BINAP as a ligand with rhodium metal. Several other diphosphines, notably DuPHOS and DIOP, also performed well. The research group which produced... [Pg.797]

The carbon-carbon double bond of an enamine is also applicable for asymmetric hydrogenation leading to chiral amino acids. For example, hydrogenation of 13 by rhodium catalyst with ferrocenyl diphosphine 15 as a ligand was successful for the synthesis of methyl 3-amino-4-polyfluorophenylbutanoate 14 with excellent stereoselectivity (see Scheme 9.5) [15]. [Pg.215]

Asymmetric hydrogenation was boosted towards synthetic applications with the preparation of binap 15 by Noyori et al. [55] (Scheme 10). This diphosphine is a good ligand of rhodium, but it was some ruthenium/binap complexes which have found spectacular applications (from 1986 up to now) in asymmetric hydrogenation of many types of unsaturated substrates (C=C or C=0 double bonds). Some examples are listed in Scheme 10. Another important development generated by binap was the isomerization of allylamines into enamines catalyzed by cationic rhodium/binap complexes [57]. This reaction has been applied since 1985 in Japan at the Takasago Company for the synthesis of (-)-menthol (Scheme 10). [Pg.33]

When steric hindrance inhibits hydrogenation on one face of a double bond, addition will take place exclusively to the less hindered face. This principle has been used to develop enantioselective or so-called asymmetric hydrogenation. The process employs homogeneous (soluble) catalysts, consisting of a metal, such as rhodium, and an enantiopure chiral phosphine ligand, which binds to the metal. A typical example is the Rh complex of the diphosphine (R,R)-DIPAMP (margin). After coordination of the alkene double bond and a molecule of H2 to rhodium, hydrogenation occurs via syn addition, just as in the case of insoluble metal catalysts. [Pg.487]


See other pages where Diphosphine ligands double bond hydrogenation is mentioned: [Pg.247]    [Pg.117]    [Pg.12]    [Pg.265]    [Pg.33]    [Pg.103]    [Pg.533]    [Pg.72]    [Pg.35]    [Pg.368]    [Pg.380]    [Pg.175]    [Pg.123]    [Pg.198]    [Pg.168]    [Pg.666]    [Pg.146]    [Pg.158]    [Pg.147]   
See also in sourсe #XX -- [ Pg.880 ]




SEARCH



Diphosphine

Diphosphine ligands

Diphosphines

Double Hydrogen Bonding

Double hydrogenation

Hydrogen bonds double

Ligand hydrogen bonding

© 2024 chempedia.info