Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,1 -Diphenylethylene oxidative dimerization

Under conditions that are not strictly nonaqueous, the oxidized dimer may be trapped by water, as was observed during the oxidation of 1,1-diphenylethylene catalyzed by the radical cation of dibenzo-1,4-dioxin [91]. The dimer dication upon reaction with water undergoes a 1,2-phenyl shift, resulting finally in 1,2,4,4-tetraphenyl-3-buten-l-one [Eq. (42)], reminiscent of the 1,2-shifts observed during anodic oxidation of 1-phenyl- and 1,4-diphenylnaphthalene in acidic dime thy Iformamide (DMF) [92]. [Pg.480]

The second electronic transfer to the oxygen produces the diradical (C) which evolves into monomer formation. The latter possibility (IV) is a homolytlc cleavage giving another anion radical. If the process follows scheme III or IV, we must obtain monomer formation after the oxidation reaction in all cases. We have carried out the oxidation of carbanionic dimers derived from isoprene, crmethylstyrene, styrene, 1,1-diphenylethylene. [Pg.484]

Photochemical reactions of substituted phenylethylenes, frans-stilbene and 1,1-diphenylethylene, on silica gel, has been reported by Sigman et al. [40]. Irradiation of fraus-slilbcnc adsorbed on silica gel produced two dimers, along with ds-stilbene, phenanthrene, and a small amount of ben-zaldehyde which arose from a type II oxidation mechanism (Scheme 9). The formation of photodimers was claimed to be promoted by inhomogeneous surface loading and slow diffusion of fraus-slilbcnc on silica [40]. [Pg.203]

The copper-catalyzed cyclopropanation of alkenes with diazoalkanes is a particularly important synthetic reaction (277). The reaction of styrene and ethyl diazoacetate catalyzed by bis[/V-(7 )- or (5)-a-phenyl-ethylsalicylaldiminato]Cu(II), reported in 1966, gives the cyclopropane adducts in less than 10% ee and was the first example of transition metal-catalyzed enantioselective reaction of prochiral compounds in homogeneous phase (Scheme 90) (272). Later systematic screening of the chiral Schiff base-Cu catalysts resulted in the innovative synthesis of a series of important cyclopropane derivatives such as chrysanthemic acid, which was produced in greater than 90% ee (Scheme 90) (273). The catalyst precursor has a dimeric Cu(II) structure, but the actual catalyst is in the Cu(I) oxidation state (274). (S)-2,2-Dimethylcyclopropanecar-boxylic acid thus formed is now used for commercial synthesis of ci-lastatin, an excellent inhibitor of dehydropeptidase-I that increases the in vivo stability of the caibapenem antibiotic imipenem (Sumitomo Chemical Co. and Merck Sharp Dohme Co.). Attempted enantioselective cyclopropanation using 1,1-diphenylethylene and ethyl diazoacetate has met with limited success (211b). A related Schiff base ligand achieved the best result, 66% optical yield, in the reaction of 1,1-diphenylethylene and ethyl diazoacetate (275). [Pg.199]


See other pages where 1,1 -Diphenylethylene oxidative dimerization is mentioned: [Pg.75]    [Pg.252]    [Pg.303]    [Pg.70]    [Pg.251]    [Pg.142]    [Pg.133]   
See also in sourсe #XX -- [ Pg.480 ]




SEARCH



1.1- Diphenylethylene, dimerization

1.1- Diphenylethylene, oxidation

Dimers oxidation

Diphenylethylene

Oxidative dimerization

Oxidative dimerizations

© 2024 chempedia.info