Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipeptide esters, sweetness-structure

Aspartame is a diastereomeric dipeptide ester, with the two asymmetric carbons ( ) being derived from (Z)-amino acids. The other three diastereomers of aspartame (the D.D-, D,L- and L,D- diastereomers) are not sweet. The three dimensional structure of aspartame in the zwitterionic form can be depicted in the following stereoscopic figure ... [Pg.11]

After the finding of a sweet taste in L-Asp-L-Phe-OMe (aspartame) by Mazur et at. (6), a number of aspartyl dipeptide esters were synthesized by several groups in order to deduce structure-taste relationships, and to obtain potent sweet peptides. In the case of the peptides, the configuration and the conformation of the molecule are important in connection with the space-filling properties. The preferred conformations of amino acids can be shown by application of the extended Hiickel theory calculation. However, projection of reasonable conformations for di- and tripeptide molecules is not easily accomplished. [Pg.133]

In the course of investigations of aspartyl dipeptide esters, we had to draw their chemical structures in a unified formula. In an attempt to find a convenient method for predicting the sweettasting property of new peptides and, in particular, to elucidate more definite structure-taste relationships for aspartyl dipeptide esters, we previously applied the Fischer projection technique in drawing sweet molecules in a unified formula 04). [Pg.133]

The sweet-tasting property of aspartyl dipeptide esters has been successfully explained on the basis of the general structures shown in Figure 1 (4). A peptide will taste sweet when it takes... [Pg.133]

The structure-taste relationships will be discussed in detail. Dipeptide esters are closely related to amino acids in chemical structure and properties. Hence, we selected amino acids as the standard to which sweet peptides were related. The structural features of sweet-tasting amino acids have been best explained by Kaneko (12) as shown in Figure 2, in which an amino acid will taste sweet when R2 is H, CH3 or C2H5, whereas the size of Ri is not restricted if the amino acid is soluble in water. [Pg.135]

Aspartame (Nutrasweet ) is a remarkably sweet-tasting dipeptide ester. Complete hydrolysis of aspartame gives phenylalanine, aspartic acid, and methanol. Mild incubation with carboxypeptidase has no effect on aspartame. Treatment of aspartame with phenyl isothiocyanate, followed by mild hydrolysis, gives the phenylthiohydantoin of aspartic acid. Propose a structure fcr aspartame. [Pg.1197]

Other peptides, such as L-aspartyl-L-phenylalanine methyl ester (aspartame), have a sweet taste. Several studies have been carried out to relate the structure and taste of analogs of this dipeptide (25). Tsang et al. (26) reported that the analogs at the lower end of the L-aspartyl-a-aminocycloalkanecarboxylic acid methyl ester series were sweet, the dipeptides containing a-... [Pg.101]

Further examinations of the molecular features and of the model of receptor have suggested that several aspartyl tripeptide esters may also taste sweet. In confirmation of the idea, several tripeptide esters have been synthesized. In the first place, L-Asp-Gly-Gly-OMe (38) was synthesized as an arbitrarily-selected standard of tripeptides, because it was considered that this peptide ester had the simplest structure, and correlation of other peptides to (38) was easy. The tripeptide ester was predicted that it would be slightly sweet or tasteless because its projection formula was similar in size and shape to that of L-Asp-Gly-0Bum which is 13 times sweeter than sucrose (16) and because it is more hydrophilic than the dipeptide. The tripeptide (38) was devoid of sweetness and almost tasteless. [Pg.142]


See other pages where Dipeptide esters, sweetness-structure is mentioned: [Pg.309]    [Pg.135]    [Pg.135]    [Pg.132]    [Pg.165]    [Pg.441]    [Pg.307]    [Pg.208]    [Pg.298]   


SEARCH



Dipeptid

Dipeptide

Dipeptide esters

Dipeptide sweet

Dipeptides

Dipeptides, structure

Ester structure

Sweet dipeptide esters

Sweet esters

© 2024 chempedia.info