Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipeptide anhydride

Cyclic dipeptides also known as cyclo dipeptides, DKPs, 2,5-dioxopiperazines (DOPs), or dipeptide anhydrides. [Pg.660]

Roasting cocoa beans results in the production of volatile and non-volatile compounds which contribute to the total flavor complex. 5-Methyl-2-phenyl-2-hexenal, which exhibited a deep bitter persistant cocoa note, was reported in the volatile fraction (53). It was postulated to be the result of aldol condensation of phenylacetaldehyde and isovaleraldehyde with the subsequent loss of water. The two aldehydes were the principal products of Strecker degradation products of phenylalanine and leucine, respectively. Non-volatiles contained diketopiperazines (dipeptide anhydride) which interact with theobromine and develop the typical bitterness of cocoa (54). Theobromine has a relatively stable metallic bitterness, but cocoa bitterness is rapidly noticed and disappears quickly. [Pg.225]

There are numerous further appHcations for which maleic anhydride serves as a raw material. These appHcations prove the versatiHty of this molecule. The popular artificial sweetener aspartame [22839-47-0] is a dipeptide with one amino acid (l-aspartic acid [56-84-8]) which is produced from maleic anhydride as the starting material. Processes have been reported for production of poly(aspartic acid) [26063-13-8] (184—186) with appHcations for this biodegradable polymer aimed at detergent builders, water treatment, and poly(acryHc acid) [9003-01-4] replacement (184,187,188) (see Detergency). [Pg.460]

A recent report describes the conversion of A-formyl- and N-acetyl-L-leucine into optically active azlactones with dicyclohexyl-carbodiimide (DCC) [Eq. (29)]. Other cyclization reagents, e.g. acetic anhydride, POCI3, SOCI2, and polyphosphoric acid, cause racemiza-tion. These azlactones react with optically active amino acid esters to give esters of dipeptides with retention of activity. [Pg.97]

Fig. 5.2 Peptide synthesis using Leuchs anhydrides amino acid 1 (with residue Ri) is reacted with phosgene to give the Leuchs anhydride. This reacts with amino acid 2 (residue R2) to give the peptide carbamate. The dipeptide is obtained after cleavage of C02... Fig. 5.2 Peptide synthesis using Leuchs anhydrides amino acid 1 (with residue Ri) is reacted with phosgene to give the Leuchs anhydride. This reacts with amino acid 2 (residue R2) to give the peptide carbamate. The dipeptide is obtained after cleavage of C02...
FIGURE 7.5 Preparation of a protected dipeptide by the mixed-anhydride method, employing a chloroformate that generates a cleavable urethane.13 The urethane impurity is destroyed by a P-elimination reaction. NMM = A-methylmorpholine, Msc = methane-sulfonylethoxycarbonyl. [Pg.202]

The traditional method for preparing activated esters of A -protected dipeptides is combination of the A-protected amino acid with the amino acid ester (Figure 7.16). The latter is obtained by A-deprotection of the diprotected amino acid in an acidic milieu. Coupling is achievable using the carbodiimide, mixed-anhydride, and acyl-azide methods. Success with this approach indicates that the esterified residues react preferentially with the other derivatives and not among themselves. The chain cannot be extended to the protected tripeptide ester because the dipeptide ester cyclizes too... [Pg.211]

DOUBLE INSERTION IN REACTIONS OF GLYCINE DERIVATIVES REARRANGEMENT OF SYMMETRICAL ANHYDRIDES TO PEPTIDE-BOND-SUBSTITUTED DIPEPTIDES... [Pg.238]

FIGURE 7.34 Decomposition of the symmetrical anhydride of A-methoxycarbonyl-valine (R1 = CH3) in basic media.2 (A) The anhydride is in equilibrium with the acid anion and the 2-alkoxy-5(4//)-oxazolone. (B) The anhydride undergoes intramolecular acyl transfer to the urethane nitrogen, producing thelV.AT-fcwmethoxycarbonyldipeptide. (A) and (B) are initiated by proton abstraction. Double insertion of glycine can be explained by aminolysis of the AA -diprotected peptide that is activated by conversion to anhydride Moc-Gly-(Moc)Gly-0-Gly-Moc by reaction with the oxazolone. (C) The A,A -diacylated peptide eventually cyclizes to the IV.AT-disubstituted hydantoin as it ejects methoxy anion or (D) releases methoxycarbonyl from the peptide bond leading to formation of the -substituted dipeptide ester. [Pg.239]

NL Benoiton, FMF Chen. Symmetrical anhydride rearrangement leads to three different dipeptide products, in D Theodoropoulus, ed. Peptides 1986. Proceedings of the 19th European Peptide Symposium. Walter de Gruyter, Berlin, 1987, pp 127-130. [Pg.239]

FIGURE 8.6 Synthesis of /V-protccted dipeptide amides (A) and methylamides (B) by ami-nolysis of the unisolated succinimido ester obtained through the mixed anhydride in CH2C12.22 The products contained <0.5% of epimerized compound. HONSu = /V-hydroxysuccinimde, NMM = Af-methylmorpholine. [Pg.250]

FIGURE 8.7 Synthesis of a protected tripeptide containing a 2-hydroxy-4-methoxybenzyl-protected peptide bond.38 (A) Acylation of the carboxy-terminal residue, (B) removal of both protecting groups, (C) O-acylation of the benzyl-protector by the symmetrical anhydride of the amino-terminal residue, and (D) migration of the protected amino-terminal residue from the oxygen atom to the amino group of the dipeptide ester. [Pg.253]

The Merck process group subsequently published a more detailed route amenable towards multikilogram scales (Blacklock et al., 1988). This synthesis begins with treatment of alanine with phosgene to produce A-carboxyanhydride (NCA) 16 (Scheme 10.3). Under basic aqueous conditions this anhydride is coupled with proline to produce, upon acidic work-up, the dipeptide alanyl-proline (14). Enalapril is then prepared in one synthetic step by a diastereoselective reductive amination between ethyl-2— oxo-4-phenylbutyrate (13) and 14. This reaction was the subject of extensive optimization, and it was found that the highest diastereoselectivity was obtained by hydrogenation over Raney nickel in the presence of acetic acid (25%), KF (4.0 equiv.), and 3 A molecular sieves (17 1 dr). Enalapril is then isolated in diastereomerically pure form as its maleate salt (Huffman and Reider, 1999 Huffman et al., 2000). [Pg.147]

The two main resin linkers developed so far are shown in Scheme 18, i.e. tris(alk-oxy)benzylamide- 412 and 4-alkoxybenzylamide-type linkers)341 the former being TFA labile and thus fully compatible with Fmoc/tBu and the latter strongly acid labile and correspondingly compatible with Boc/Bzl chemistry. As shown in the case of the tris(alk-oxy)benzaldehyde handle such handles may be introduced into the C-terminal amino acid ester by reductive amination, and after suitable N -protection coupled to amino-functionalized resins (see Scheme 18). Alternatively, the tris(alkoxy)benzaldehyde-functionalized resin, BAL resin, (see Scheme 14) is used to link the C-terminal amino acid ester by reductive amination. To overcome the difficult acylation of the V -arylamino acid ester derivative on resin (best results with 10 equivalent symmetrical anhydrides), synthesis in solution of the C-terminal dipeptide building block containing the amide handle followed by its attachment to the resin has been proposed)341 ... [Pg.498]

Symmetrical piperazine-2,5-diones have been obtained in good yields by treating Leuchs anhydrides (l,3-oxazolidine-2,5-diones) with aziridine [70AG(E)162]. The reaction apparently proceeds through the formation of dipeptide aziridides (Scheme 5). [Pg.195]

In solution-phase peptide synthesis, acylation of amino acids or peptides with N-protected azetidine-2-carboxylic acid is performed via the active esters, e.g. A-hydroxysuccin-imide 100 111-112 or pentachlorophenyl ester, m 117 as well as by the mixed anhydride 101114 or carbodiimide 118 methods. An attempt to prepare the A-carbonic acid anhydride by cycli-zation of A-(chloroformyl)azetidine-2-carboxylic acid with silver oxide in acetone or by addition of triethylamine in situ failed, presumably due to steric hindrance. 111 In SPPS, activation of the Fmoc-protected imino acid by HBTU 119,120 is reported. In solution-phase peptide synthesis, coupling of N-protected amino acids or peptides to C-protected azetidine-2-carboxylic acid or related peptides may be performed by active esters, 100 118 121 mixed anhydrides, 95 or similar methods. It may be worth mentioning that the probability of pip-erazine-2,5-dione formation from azetidine-2-carboxylic acid dipeptides is significantly reduced compared to proline dipeptides. 111 ... [Pg.63]

As mentioned above, thiazolidine-4-carboxylic acid is characterized by an anomalously low basicity and thus difficult acylation in peptide synthesis. 189 Therefore, the incorporation of this amino acid residue into a growing peptide chain is preferentially preformed via dipeptide derivatives. 139 Suitably N-protected amino acids are coupled directly to the thiazolidine-4-carboxylic acid by the acid fluoride 139 or iV-carboxyan hydride 1392111 methods. The resulting dipeptides are used as building blocks without risk of racemization 139 and standard coupling procedures are applied as pentachlorophenyl esters prepared by the mixed anhydride procedure 121 or PyBOP. 171 ... [Pg.76]


See other pages where Dipeptide anhydride is mentioned: [Pg.147]    [Pg.147]    [Pg.147]    [Pg.147]    [Pg.249]    [Pg.330]    [Pg.13]    [Pg.56]    [Pg.56]    [Pg.79]    [Pg.200]    [Pg.201]    [Pg.204]    [Pg.211]    [Pg.220]    [Pg.222]    [Pg.223]    [Pg.237]    [Pg.238]    [Pg.239]    [Pg.250]    [Pg.261]    [Pg.1066]    [Pg.21]    [Pg.311]    [Pg.434]    [Pg.275]    [Pg.61]    [Pg.73]    [Pg.280]    [Pg.293]    [Pg.368]    [Pg.393]   
See also in sourсe #XX -- [ Pg.225 ]




SEARCH



Dipeptid

Dipeptide

Dipeptides

© 2024 chempedia.info