Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Differential data analysis

Differential Data Analysis As indicated above, the rates can be obtained either directly from differential CSTR data or by differentiation of integral data. A common way of evaluating the kinetic parameters is by rearrangement of the rate equation, to make it linear in parameters (or some transformation of parameters) where possible. For instance, using the simple nth-order reaction in Eq. (7-165) as an example, taking the natural logarithm of both sides of the equation results in a linear relationship Between the variables In r, 1/T, and In C ... [Pg.36]

There are two main applications for such real-time analysis. The first is the detemiination of the chemical reaction kinetics. Wlien the sample temperature is ramped linearly with time, the data of thickness of fomied phase together with ramped temperature allows calculation of the complete reaction kinetics (that is, both the activation energy and tlie pre-exponential factor) from a single sample [6], instead of having to perfomi many different temperature ramps as is the usual case in differential themial analysis [7, 8, 9, 10 and H]. The second application is in detemiining the... [Pg.1835]

CSTRs and other devices that require flow control are more expensive and difficult to operate. Particularly in steady operation, however, the great merit of CSTRs is their isothermicity and the fact that their mathematical representation is algebraic, involving no differential equations, thus maldng data analysis simpler. [Pg.708]

Figure 3-17. Sohematios of the differential method for data analysis. Figure 3-17. Sohematios of the differential method for data analysis.
Perhaps the most definitive result to come from the early nickel-aluminia synthesis work was the thermal analysis investigation of Hammetter [88HO 88W01], which showed explicit data on substantial changes in the shockec-but-unreacted mixtures. Differential thermal analysis was carried out on th -starting powder compacts of both the mechanically mixed and composite powders. Shocked and unreacted powders were compared to provide direc evidence for substantial changes introduced by the shock process. [Pg.187]

The techniques referred to above (Sects. 1—3) may be operated for a sample heated in a constant temperature environment or under conditions of programmed temperature change. Very similar equipment can often be used differences normally reside in the temperature control of the reactant cell. Non-isothermal measurements of mass loss are termed thermogravimetry (TG), absorption or evolution of heat is differential scanning calorimetry (DSC), and measurement of the temperature difference between the sample and an inert reference substance is termed differential thermal analysis (DTA). These techniques can be used singly [33,76,174] or in combination and may include provision for EGA. Applications of non-isothermal measurements have ranged from the rapid qualitative estimation of reaction temperature to the quantitative determination of kinetic parameters [175—177]. The evaluation of kinetic parameters from non-isothermal data is dealt with in detail in Chap. 3.6. [Pg.23]

Modern instruments capable of obtaining excitation-emission matrices (EEMs) allow use of new data-analysis techniques to resolve overlapped spectra. Resolution techniques such as the ratio method (28) and others (29,30) may provide further differentiation of the components present in the phases separated by solvent extraction. [Pg.178]

In this section, the relationship between the measured quantity and the desired center-of-mass differential cross-section will be established and a brief description of the data analysis procedure will then be given. First, consider a Newton sphere with a single value of the product velocity v (see Fig. 4). From the Doppler-shift formula, at a given laser wavelength, the Doppler effect selectively ionizes those ions with vz = vcosO in the... [Pg.9]

Owing to the symmetry property of an optical dipole transition, the data analysis for a photodissociation study is greatly simplified. The center-of-mass differential cross-section for a single-photon, dissociative process can be expressed as38,39... [Pg.12]

Since data are almost invariably taken under isothermal conditions to eliminate the temperature dependence of reaction rate constants, one is primarily concerned with determining the concentration dependence of the rate expression [0(Ct)] and the rate constant at the temperature in question. We will now consider two differential methods that can be used in data analysis. [Pg.41]

In a manner similar to that just described for differential thermal analysis, DSC can be used to obtain useful and characteristic thermal and melting point data for crystal polymorphs or solvate species. This information is of great importance to the pharmaceutical industry since many compounds can crystallize in more than one structural modification, and the FDA is vitally concerned with this possibility. Although the primary means of polymorph or solvate characterization s centered around x-ray diffraction methodology, in suitable situations thermal analysis can be used to advantage. [Pg.239]

There is no evidence for polymorphism from infrared spectroscopy and differential thermal analysis, and only inconclusive data from x-ray diffraction and microscopy studies. [Pg.268]

Differentiation of vapor responses of the colloidal crystal film was accomplished with spectral measurements of the shape changes of the diffraction peak. Selectivity of response was obtained by applying multivariate data analysis to correlate these spectral changes to the effects of species of different chemical nature and to establish the identity and concentration of species. [Pg.80]

Zeman, S., "The Relationship between Differential Thermal Analysis Data and the Detonation Characteristics of Polynitroaromatic Compounds," Thermo-chimica Acta, 41 (1980). [Pg.187]

Because PB-PK models are based on physiological and anatomical measurements and all mammals are inherently similar, they provide a rational basis for relating data obtained from animals to humans. Estimates of predicted disposition patterns for test substances in humans may be obtained by adjusting biochemical parameters in models validated for animals adjustments are based on experimental results of animal and human in vitro tests and by substituting appropriate human tissue sizes and blood flows. Development of these models requires special software capable of simultaneously solving multiple (often very complex) differential equations, some of which were mentioned in this chapter. Several detailed descriptions of data analysis have been reported. [Pg.728]

Consideration of the white blood cell (WBC) and differential counts leads to another problem. The total WBC is, typically, a normal population amenable to parametric analysis, but differential counts are normally determined by counting, manually, one or more sets of one hundred cells each. The resulting relative percentages of neutrophils are then reported as either percentages or are multiplied by the total WBC count with the resulting count being reported as the absolute differential WBC. Such data, particularly in the case of eosinophils (where the distribution does not approach normality), should usually be analyzed by nonpara-metric methods. It is widely believed that relative (%) differential data should not be reported because they are likely to be misleading. [Pg.962]


See other pages where Differential data analysis is mentioned: [Pg.834]    [Pg.841]    [Pg.834]    [Pg.841]    [Pg.636]    [Pg.332]    [Pg.10]    [Pg.766]    [Pg.767]    [Pg.454]    [Pg.455]    [Pg.147]    [Pg.210]    [Pg.317]    [Pg.311]    [Pg.96]    [Pg.37]    [Pg.135]    [Pg.433]    [Pg.43]    [Pg.135]    [Pg.224]    [Pg.90]    [Pg.202]    [Pg.354]    [Pg.11]   


SEARCH



Data analysis differential method

Data analysis methods differential method

Differential analysis

Differential method, reaction rate data analysis

Differential methods of data analysis (

Differential thermal analysis data reporting

The Differential Method of Data Analysis

© 2024 chempedia.info