Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes double-bond reactions

In the series of hydroxycyclohexadienylperoxyl radicals, one encounters the competition between the H02-/02- elimination leading to phenol [reactions (9) and (14)/(15)] and fragmentation of the ring (Pan et al. 1993). That latter has been attributed to an intramolecular addition of the peroxyl radical function to a diene double bond [reaction (24)]. This reaction is reversible [reaction (-24)], but when 02 adds to the newly created carbon-centered radical the endoperoxidic function is locked in [reaction (25)]. In analogy to reaction (24), the first step of the trichloromethylperoxyl-radical-induced oxidation of indole is its addition to the indole C(2)-C(3) double bond (Shen et al. 1989). [Pg.169]

The mechanism of this new reaction is shown in Scheme 14. Coordination of the diene to palladium(II) makes the diene double bond electrophilic enough to be attacked by the allylsilane. The attack by the allylsilane takes place on the face of the diene opposite to that of the palladium (anti). This is the first example of an anti attack by an allylsilane on a 7T-(olefin)metal complex. Benzoquinone (BQ)-induced anti attack by chloride ion produces the product 58. [Pg.675]

Addition of It to the isomeric 1,3-pentadienes and other nonsymmetrically substituted dienes occurs selectively at the more substituted diene double bond (106). For example, the reaction of 1-t with cis-l,3-pentadiene yields adducts 51, 52, and 53 (mixture of stereoisomers) in the ratio 3.3 1.2 1. [Pg.198]

Vinylation of dienes in the presence of piperidine or morpholine yields aminodienes as major products. Sometimes trienes are minor products. The reaction is believed to proceed by way of a ir-allylpal-ladium complex formed by addition of the vinylpalladium halide to the least-substituted diene double bond. Nucleophilic attack of the amine upon the ir-allylic complex gives the aminodienes, while hydridopalladium halide elimination yields trienes (Scheme 6).97... [Pg.855]

The stereochemistry of the cycloadducts in intramolecular Diels-Alder reactions depends upon the different geometry of the possible transition states 37—40 whose nomenclature can be explained as follows The orientation with the chain connecting the diene and dienophile lying under or above the diene is called endo. The opposite means exo. E and Z mark the geometry of the diene double bond which is connected with the chain. Syn and anti describe the arrangement of the hydrogen atoms (or substituents) at the prestereogenic centers which are involved in the C-C bond formation.12... [Pg.97]

Epoxidation of vitamin D3 (38) is regio- as well as stereo-selective (equation 17). Though both C(S)—C(6) and C(7)—C(8) are trisubstituted double bonds reaction takes place selectively at C(7)— C(8), since only this route leads to the thermodynamically more stable conjugated diene derivative attack is selectively from the a-face since the 0-face is shielded by the axial methyl at C-13. Epoxidation of (39a) is stereoselective (equation 18). The selectivity is higher in (39a) than in the reaction of (39b R = MOM) due to stereoelectronic repulsive effects involving acetate and peroxy acid in the transition state leading to (41). [Pg.362]

Intramolecular reactions of allylic acetates with conjugated dienes catalyzed by Pd(0) lead to a 1,4-addition of a carbon and an oxygen nucleophile to the diene. The reaction, which is formally an isomerization, involves tw different yr-allyl complexes (Scheme 8-4) [44]. Reaction of 22 in the presence of the Pd(0) catalyst Pd2(dba)3-CHCl3 (dba = dibenzyl-ideneacetone) and LiOAc/HOAc in acetonitrile at reflux produces the cyclized isomer 25 in 62% yield. The double bond was exclusively of E stereochemistry, while the ring stereochemistry was a mixture of cis and tram isomers. Oxidative addition of the Pd(0) to the allylic acetate gives the intermediate jr-allyl complex 23. Subsequent insertion of a diene double bond into the allyl-palladium bond produces another jr-allyl intermediate (24), which is subsequendy attacked by acetate to give the product 25. [Pg.456]

Endo products result from Diels-Alder reactions because the amount of orbital overlap between diene and dienophile is greater when the reactants lie directly on top of one another so that the electron-withdrawing substituent on the dienophile is underneath the diene double bonds. In the reaction of 1,3-cyclopenta-diene with maleic anhydride, for instance, the following result is obtained ... [Pg.512]

CH = CH — CH = CH — are said to have conjugated double bonds and react somewhat differently from the other diolefins. For instance, bromine or hydrogen is often added so that a product of the type -CHBr-CH=CH-CHBr- is formed. Also, these hydrocarbons participate in the Diels-Alder reaction see diene reactions). They show a tendency to form rubber-like polymers. Hydrocarbons not falling into these two classes are said to have isolated double... [Pg.142]

This thesis has been completely devoted to catalysis by relatively hard catalysts. When aiming at the catalysis of Diels-Alder reactions, soft catalysts are not an option. Soft catalysts tend to coordinate directly to the carbon - carbon double bonds of diene and dienophile, leading to an activation towards nucleophilic attack rather than to a Diels-Alder reaction . This is unfortunate, since in water, catalysis by hard catalysts suffers from a number of intrinsic disadvantages, which are absent for soft catalysts. [Pg.163]

In the presence of a double bond at a suitable position, the CO insertion is followed by alkene insertion. In the intramolecular reaction of 552, different products, 553 and 554, are obtained by the use of diflerent catalytic spe-cies[408,409]. Pd(dba)2 in the absence of Ph,P affords 554. PdCl2(Ph3P)3 affords the spiro p-keto ester 553. The carbonylation of o-methallylbenzyl chloride (555) produced the benzoannulated enol lactone 556 by CO, alkene. and CO insertions. In addition, the cyclobutanone derivative 558 was obtained as a byproduct via the cycloaddition of the ketene intermediate 557[4I0]. Another type of intramolecular enone formation is used for the formation of the heterocyclic compounds 559[4l I]. The carbonylation of the I-iodo-1,4-diene 560 produces the cyclopentenone 561 by CO. alkene. and CO insertions[409,4l2]. [Pg.204]

The coupling of alkenylboranes with alkenyl halides is particularly useful for the stereoselective synthesis of conjugated dienes of the four possible double bond isomers[499]. The E and Z forms of vinylboron compounds can be prepared by hydroboration of alkynes and haloalkynes, and their reaction with ( ) or (Z)-vinyl iodides or bromides proceeds without isomerization, and the conjugated dienes of four possible isomeric forms can be prepared in high purity. [Pg.221]

The allenyl moiety (2,3-aikadienyl system) in the carbonylation products is a reactive system and further reactions such as intramolecular Diels-Alder and ene reactions are possible by introducing another double bond at suitable positions of the starting 2-alkynyl carbonates. For example, the propargylic carbonate 33 which has l,8(or 1.9)-diene-3-yne system undergoes tandem carbonylation and intramolecular Diels-Alder reaction to afford the polycyclic compound 34 under mild conditions (60 C, 1 atm). The use of dppp as ligand is important. One of the double bonds of the allenyl ester behaves as part of the dieneflSj. [Pg.458]


See other pages where Dienes double-bond reactions is mentioned: [Pg.269]    [Pg.362]    [Pg.1129]    [Pg.2173]    [Pg.270]    [Pg.412]    [Pg.226]    [Pg.264]    [Pg.92]    [Pg.130]    [Pg.335]    [Pg.349]    [Pg.361]    [Pg.477]    [Pg.481]    [Pg.405]   
See also in sourсe #XX -- [ Pg.664 , Pg.665 , Pg.666 , Pg.667 , Pg.668 , Pg.669 , Pg.670 ]

See also in sourсe #XX -- [ Pg.664 , Pg.665 , Pg.666 , Pg.667 , Pg.668 , Pg.669 , Pg.670 ]




SEARCH



Diene bonding

Diene reaction

Dienes, reactions

Double bonds, reactions

Reaction double

© 2024 chempedia.info