Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diatomic molecules electronic structure

Field RW. Diatomic Molecule Electronic Structure beyond Simple Molecular Constants. Ber Bunsenges Phys Chem. 1982 86 771. [Pg.86]

R. W. Field, Diatomic molecule electronic structure beyond simple molecular constants, Ber. Bunsenges. Phys. 86, 771-779 (1982). [Pg.116]

Becke A D 1983 Numerical Hartree-Fock-Slater calculations on diatomic molecules J. Chem. Phys. 76 6037 5 Case D A 1982 Electronic structure calculation using the Xa method Ann. [Pg.2199]

The molecular orbital (MO) approach to the electronic structure of diatomic, and also polyatomic, molecules is not the only one which is used but it lends itself to a fairly qualitative description, which we require here. [Pg.225]

Figure 7.28 Rotational fine structure of a 77 — electronic or vibronic transition in a diatomic molecule for which > r". The g and u subscripts and s and a labels apply only to a homonuclear molecule... Figure 7.28 Rotational fine structure of a 77 — electronic or vibronic transition in a diatomic molecule for which > r". The g and u subscripts and s and a labels apply only to a homonuclear molecule...
As is the case for diatomic molecules, rotational fine structure of electronic spectra of polyatomic molecules is very similar, in principle, to that of their infrared vibrational spectra. For linear, symmetric rotor, spherical rotor and asymmetric rotor molecules the selection mles are the same as those discussed in Sections 6.2.4.1 to 6.2.4.4. The major difference, in practice, is that, as for diatomics, there is likely to be a much larger change of geometry, and therefore of rotational constants, from one electronic state to another than from one vibrational state to another. [Pg.283]

Among the diatomic molecules of the second period elements are three familiar ones, N2,02, and F2. The molecules Li2, B2, and C2 are less common but have been observed and studied in the gas phase. In contrast, the molecules Be2 and Ne2 are either highly unstable or nonexistent. Let us see what molecular orbital theory predicts about the structure and stability of these molecules. We start by considering how the atomic orbitals containing the valence electrons (2s and 2p) are used to form molecular orbitals. [Pg.651]

The electronic structure of the chlorine atom (3s-3p ) provides a satisfactory explanation of the elemental form of this substance also. The single half-filled 3p orbital can be used to form one covalent bond, and therefore chlorine exists as a diatomic molecule. Finally, in the argon atom all valence orbitals of low energy are occupied by electrons, and the possibility for chemical bonding between the atoms is lost. [Pg.366]

Kotani, M., Texas J. Sci. 8, 135 Proc. of the molecular quantum mechanics conference at Austin Texas, 1955. Electronic structure of some simple diatomic molecules/ Li2, 02 MO-SCF, MO-CI. Slater type orbitals. [Pg.348]

Ishiguro, E., Kayama, K., Kotani, M., and Mizuno, Y., J. Phys. Soc. Japan 12, 1355, Electronic structure of simple homonuclear diatomic molecules. II. Lithium molecule. ... [Pg.353]

To describe the band structure of metals, we use the approach employed above to describe the bonding in molecules. First, we consider a chain of two atoms. The result is the same as that obtained for a homonuclear diatomic molecule we find two energy levels, the lower one bonding and the upper one antibonding. Upon adding additional atoms, we obtain an additional energy level per added electron, until a continuous band arises (Fig. 6.9). To describe the electron band of a metal in a... [Pg.229]

If we move the chemisorbed molecule closer to the surface, it will feel a strong repulsion and the energy rises. However, if the molecule can respond by changing its electron structure in the interaction with the surface, it may dissociate into two chemisorbed atoms. Again the potential is much more complicated than drawn in Fig. 6.34, since it depends very much on the orientation of the molecule with respect to the atoms in the surface. For a diatomic molecule, we expect the molecule in the transition state for dissociation to bind parallel to the surface. The barriers between the physisorption, associative and dissociative chemisorption are activation barriers for the reaction from gas phase molecule to dissociated atoms and all subsequent reactions. It is important to be able to determine and predict the behavior of these barriers since they have a key impact on if and how and at what rate the reaction proceeds. [Pg.255]

J.D. Morgan 111, in Numerical determination of the electronic structure of atoms, diatomic and polyatomic molecules. M. Defranceschi and J. Delhalle Eds., (Kluwer, Dordrecht (1989) p. 49... [Pg.101]

J.G. Fripiat, M. Defranceschi, J. Delhalle in Numerical Determination of the Electronic Structure of Atoms. Diatomic and Polyatomic Molecules. M.Defranceschi, J. Delhalle (eds), NATO-ASI Series C vol. 271, Kluwer Academic Publishers, Dordrecht, 1989, pp. 245-250... [Pg.156]

J. W. Linnett. There were 11 papers with theoretical inputs but with more emphasis given to new developments in experimental methods including structural (LEED and electron microscopy) and surface spectroscopies. LEED provided crucial evidence for the role of surface steps at platinum single crystals in the dissociation of various diatomic molecules, while electron microscopy revealed the role of dislocations as sites of high reactivity of... [Pg.7]

The gaseous elements hydrogen, nitrogen, and fluorine exist as diatomic molecules when they are not combined with other elements. Draw an electron dot structure for each molecule. [Pg.93]

It is also possible that orbitals of different kinds on the two atomic centers such as s-pz, p -d , d,z-p, etc. can combine to generate the MO for the diatomic molecules. As the one-center atomic orbitals are not orthogonal in molecules, for the depiction of electronic structure, the concept of hybridization is quite useful. [Pg.28]

MO wave functions in the above form give equal importance to covalent and ionic structures, which is unrealistic in homonuclear diatomic molecules like H2. This should be contrasted with (/>Vb> which in its simple form neglects the ionic contributions. Both and i//MO are inadequate in their simplest forms while in the VB theory the electron correlation is overemphasized, simple MO theory totally neglects it giving equal importance to covalent and ionic structures. Therefore neither of them is able to predict binding energies closer to experiment. The MO theory could be... [Pg.28]

Usually the electronic structure of diatomic molecules is discussed in terms of the canonical molecular orbitals. In the case of homonuclear diatomics formed from atoms of the second period, these are the symmetry orbitals 1 og, 1 ou, 2ag,... [Pg.48]

Lennard-Jones, J. E. "The Electronic Structure of Some Diatomic Molecules." Trans.Far.Soc. 25 (1929) 668682. [Pg.329]

During the last decade MO-theory became by far the most well developed quantum mechanical method for numerical calculations on molecules. Small molecules, mainly diatomics, or highly symmetric structures were treated most accurately. Now applicability and limitations of the independent particle, or Hartree-Fock (H. F.), approximation in calculations of molecular properties are well understood. An impressive number of molecular calculations including electron correlation is available today. Around the equilibrium geometries of molecules, electron-pair theories were found to be the most economical for actual calculations of correlation effects ). Unfortunately, accurate calculations as mentioned above are beyond the present computational possibilities for larger molecular structures. Therefore approximations have to be introduced in the investigation of problems of chemical interest. Consequently the reliability of calculated results has to be checked carefully for every kind of application. Three types of approximations are of interest in connection with this article. [Pg.16]

Kratzer and Loomis as well as Haas (1921) also discussed the isotope effect on the rotational energy levels of a diatomic molecule resulting from the isotope effect on the moment of inertia, which for a diatomic molecule, again depends on the reduced mass. They noted that isotope effects should be seen in pure rotational spectra, as well as in vibrational spectra with rotational fine structure, and in electronic spectra with fine structure. They pointed out the lack of experimental data then available for making comparison. [Pg.25]


See other pages where Diatomic molecules electronic structure is mentioned: [Pg.106]    [Pg.55]    [Pg.578]    [Pg.231]    [Pg.65]    [Pg.689]    [Pg.205]    [Pg.695]    [Pg.40]    [Pg.49]    [Pg.45]    [Pg.158]    [Pg.134]    [Pg.686]    [Pg.61]    [Pg.22]    [Pg.14]    [Pg.123]    [Pg.252]    [Pg.279]    [Pg.260]    [Pg.645]    [Pg.651]   
See also in sourсe #XX -- [ Pg.57 , Pg.58 ]




SEARCH



Diatomic molecules structure

Diatomics, electronic structure

ELECTRONIC STRUCTURE OF DIATOMIC MOLECULES

Molecule electronic

Molecules structures

Molecules, electronic structures

Structural molecules

© 2024 chempedia.info