Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diastereomers structure

If compounds have the same topology (constitution) but different topography (geometry), they are called stereoisomers. The configuration expresses the different positions of atoms around stereocenters, stereoaxes, and stereoplanes in 3D space, e.g., chiral structures (enantiomers, diastereomers, atropisomers, helicenes, etc.), or cisftrans (Z/E) configuration. If it is possible to interconvert stereoisomers by a rotation around a C-C single bond, they are called conformers. [Pg.75]

Steroids are another class of natural products with multiple chirality centers One such compound is cholic acid which can be obtained from bile Its structural formula IS given m Figure 7 12 Cholic acid has 11 chirality centers and so a total (including cholic acid) of 2" or 2048 stereoisomers have this constitution Of these 2048 stereoiso mers how many are diastereomers of cholic acid s Remember Diastereomers are stereoisomers that are not enantiomers and any object can have only one mirror image Therefore of the 2048 stereoisomers one is cholic acid one is its enantiomer and the other 2046 are diastereomers of cholic acid Only a small fraction of these compounds are known and (+) cholic acid is the only one ever isolated from natural sources... [Pg.306]

Streptirnidone is an antibiotic and has the structure shown How many diastereomers of streptimidone are possible" How many enantiomers" Using the E Z and R S descnptors specify all essential elements of stereochemistry of streptimidone... [Pg.322]

Multiple Chiral Centers. The number of stereoisomers increases rapidly with an increase in the number of chiral centers in a molecule. A molecule possessing two chiral atoms should have four optical isomers, that is, four structures consisting of two pairs of enantiomers. However, if a compound has two chiral centers but both centers have the same four substituents attached, the total number of isomers is three rather than four. One isomer of such a compound is not chiral because it is identical with its mirror image it has an internal mirror plane. This is an example of a diaster-eomer. The achiral structure is denoted as a meso compound. Diastereomers have different physical and chemical properties from the optically active enantiomers. Recognition of a plane of symmetry is usually the easiest way to detect a meso compound. The stereoisomers of tartaric acid are examples of compounds with multiple chiral centers (see Fig. 1.14), and one of its isomers is a meso compound. [Pg.47]

Diastereomers include all stereoisomers that are not related as an object and its mirror image. Consider the four structures in Fig. 2.3. These structures represent fee four stereoisomers of 2,3,4-trihydroxybutanal. The configurations of C-2 and C-3 are indicated. Each stereogenic center is designated J or 5 by application of the sequence rule. Each of the four structures is stereoisomeric wife respect to any of fee others. The 2R R and 25,35 isomers are enantiomeric, as are fee 2R, iS and 25,3J pair. The 21 ,35 isomer is diastereomeric wife fee 25,35 and 2R,3R isomers because they are stereoisomers but not enantiomers. Any given structure can have only one enantiomer. All other stereoisomers of feat molecule are diastereomeric. The relative configuration of diastereomeric molecules is fiequently specified using fee terms syn and anti. The molecules are represented as extended chains. Diastereomers wife substituents on the same side of the extended chain are syn stereoisomers, whereas those wife substituents on opposite sides are anti stereoisomers. [Pg.84]

The ratio of products 15 and 16 is dependent on the structures, base, and the solvent. The kinetics of the reaction is likewise dependant on the structures and conditions of the reaction. Thus addition or cyclization can be the rate-determining step. In a particularly noteworthy study by Zimmerman and Ahramjian, it was reported that when both diastereomers of 20 were treated individually with potassium r-butoxide only as-epoxy propionate 21 was isolated. It is postulated that the cyclization is the rate-limiting step. Thus, for these substrates, the retro-aldolization/aldolization step reversible. ... [Pg.17]

Conversely, when A-alkyl tryptophan methyl esters were condensed with aldehydes, the trans diastereomers were observed as the major products." X-ray-crystal structures of 1,2,3-trisubstituted tetrahydro-P-carbolines revealed that the Cl substituent preferentially adopted a pseudo-axial position, forcing the C3 substituent into a pseudo-equatorial orientation to give the kinetically and thermodynamically preferred trans isomer." As the steric size of the Cl and N2 substituents increased, the selectivity for the trans isomer became greater. A-alkyl-L-tryptophan methyl ester 42 was condensed with various aliphatic aldehydes in the presence of trifluoroacetic acid to give predominantly the trans isomers. ... [Pg.474]

The validity of the model was demonstrated by reacting 35 under the same reaction conditions as expected, only one diastereoisomer 41 was formed, the structure of which was confirmed by X-ray analysis. When the vinylation was carried out on the isothiazolinone 42 followed by oxidation to 40, the dimeric compound 43 was obtained, showing that the endo-anti transition state is the preferred one. To confirm the result, the vinyl derivative 42 was oxidized and the intermediate 40 trapped in situ with N-phenylmaleimide. The reaction appeared to be completely diastereoselective and a single diastereomer endo-anti 44 was obtained. In addition, calculations modelling the reactivity of the dienes indicated that the stereochemistry of the cycloaddition may be altered by variation of the reaction solvent. [Pg.76]

In the 1,3-dipolar cycloaddition reactions of especially allyl anion type 1,3-dipoles with alkenes the formation of diastereomers has to be considered. In reactions of nitrones with a terminal alkene the nitrone can approach the alkene in an endo or an exo fashion giving rise to two different diastereomers. The nomenclature endo and exo is well known from the Diels-Alder reaction [3]. The endo isomer arises from the reaction in which the nitrogen atom of the dipole points in the same direction as the substituent of the alkene as outlined in Scheme 6.7. However, compared with the Diels-Alder reaction in which the endo transition state is stabilized by secondary 7t-orbital interactions, the actual interaction of the N-nitrone p -orbital with a vicinal p -orbital on the alkene, and thus the stabilization, is small [25]. The endojexo selectivity in the 1,3-dipolar cycloaddition reaction is therefore primarily controlled by the structure of the substrates or by a catalyst. [Pg.217]

The desilylacetylated qrcloadducts, produced from the reactions of trimethylsilyl-diazomethane with 3-crotonoyl-2-oxazolidinone or 3-crotonoyl-4,4-dimethyl-2-oxa-zolidinone, were transformed to methyl traws-l-acetyl-4-methyl-l-pyrazoline-5-car-boxylate through the reactions with dimethoxymagnesium at -20 °C. When the optical rotations and chiral HPLC data were compared between these two esters, it was found that these two products had opposite absolute stereochemistry (Scheme 7.39). The absolute configuration was identified on the basis of the X-ray-determined structure of the major diastereomer of cycloadduct derived from the reaction of trimethylsilyldiazomethane to (S)-3-crotonoyl-4-methyl-2-oxazolidi-none. [Pg.283]

The enantiomers are obtained as a racemic mixture if no asymmetric induction becomes effective. The ratio of diastereomers depends on structural features of the reactants as well as the reaction conditions as outlined in the following. By using properly substituted preformed enolates, the diastereoselectivity of the aldol reaction can be controlled. Such enolates can show E-ot Z-configuration at the carbon-carbon double bond. With Z-enolates 9, the syn products are formed preferentially, while fi-enolates 12 lead mainly to anti products. This stereochemical outcome can be rationalized to arise from the more favored transition state 10 and 13 respectively ... [Pg.7]

Dezocine (30) represents a class of bridged aminotetralins possessing morphine-like analgesic properties. It appears to be roughly equivalent in potency and addiction potential to morphine. The molecule combines molecular features of precedent aminotetralins and benzomor-phans and its structure fits the classical Morphine Rule. The 1-enantiomer is the more active and the p-epimer (equatorial NHj) is the active diastereomer. [Pg.59]

One of the following molecules (a)-(d) is D-erythrose 4-phosphale, an intermediate in the Calvin photosynthetic cycle by which plants incorporate C02 into carbo- hydrates. If D-erythrose 4-phosphate has R stereochemistry at both chirality centers, which of the structures is it Which of the remaining three structures is the enantiomer of D-erythrose 4-phosphate, and which are diastereomers ... [Pg.304]

DEPT-NMR spectrum. 6-methyl-5-hepten-2-ol, 451 Detergent, structure of, 1065 Deuterium isotope effect, 386-387 El reaction and, 392 E2 reaction and, 386-387 Dewar benzene. 1201 Dextromethorphan, structure of, 294 Dextrorotatory, 295 Dextrose, structure of. 973 Dialkylamine, pKa of, 852 Diastereomers, 302-303 kinds of, 310-311 Diastereotopic (NMR), 456... [Pg.1294]

I-Oialkoxy carbonyl compounds are a special class of chiral alkoxy carbonyl compounds because they combine the structural features, and, therefore, also the stereochemical behavior, of 7-alkoxy and /i-alkoxy carbonyl compounds. Prediction of the stereochemical outcome of nucleophilic additions to these substrates is very difficult and often impossible. As exemplified with isopropylidene glyceraldehyde (Table 15), one of the most widely investigated a,/J-di-alkoxy carbonyl compoundsI0S, the predominant formation of the syn-diastereomer 2 may be attributed to the formation of the a-chelate 1 A. The opposite stereochemistry can be rationalized by assuming the Felkin-Anh-type transition state IB. Formation of the /(-chelate 1C, which stabilizes the Felkin-Anh transition state, also leads to the predominant formation of the atm -diastereomeric reaction product. [Pg.70]

Even acetophenone reacts with the magnesium compound 17 (R1 = R2 = H) to yield the w-diastereomer 18 with 90 % de 22 24. The structure of the metal-organic precursor and, as well, of the major product was determined by an X-ray crystal structure analysis23. [Pg.195]

Reaction of lithium enolate 2 with prochiral 3-buten-2-one (4) proceeds with minimal selectivity to produce nearly equal amounts of the two diastereomers of structure 540,41. [Pg.531]

Transmetalation of 19 by treatment with two equivalents of diethylaluminum chloride generates the aluminum enolate species 23. The latter reacts with acetaldehyde to produce the stable aluminum aldolates 24 which do not undergo the Peterson elimination23. A protic quench then provides the a-silylated aldol adducts of tentative structures (2 R)-25 and (2 V)-25 with little diastereoselectivity. Other diastereomers are not observed. [Pg.549]


See other pages where Diastereomers structure is mentioned: [Pg.64]    [Pg.26]    [Pg.706]    [Pg.234]    [Pg.782]    [Pg.783]    [Pg.64]    [Pg.236]    [Pg.325]    [Pg.64]    [Pg.26]    [Pg.706]    [Pg.234]    [Pg.782]    [Pg.783]    [Pg.64]    [Pg.236]    [Pg.325]    [Pg.132]    [Pg.376]    [Pg.352]    [Pg.309]    [Pg.237]    [Pg.246]    [Pg.75]    [Pg.329]    [Pg.213]    [Pg.70]    [Pg.146]    [Pg.323]    [Pg.258]    [Pg.339]    [Pg.328]    [Pg.1302]    [Pg.216]    [Pg.237]    [Pg.287]    [Pg.640]    [Pg.287]   
See also in sourсe #XX -- [ Pg.39 , Pg.42 , Pg.42 ]




SEARCH



Diastereomer

Diastereomers

Diastereomers, crystal structures

Molecular structure conformation Conformations Diastereomers

Molecular structure diastereomers

© 2024 chempedia.info